Skip to main content

Advertisement

Log in

Pharmacodynamic properties of methotrexate and AminotrexateTM during weekly therapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 10 May 2006

Abstract

4-amino-pteroyl-glutamic acid (AminotrexateTM; AMT) has several advantages over the related antifolate methotrexate (MTX), including greater potency, complete oral bioavailability, and greater accumulation by leukemic blasts in vitro. We compared the pharmacodynamic properties of AMT (given orally at 4 mg/m2 in two divided doses per week) and MTX (100 mg/m2 in four divided doses per week) among children with acute lymphoblastic leukemia. We find AMT and MTX to have equivalent penetration into the bone marrow compartment of these patients, as indicated by the steady-state concentrations within mature red blood cells (RBCs). However, MTX concentrations in the cerebrospinal fluid after oral dosage are significantly greater than AMT. To confirm these clinical observations, mice were treated four weekly injections of AMT or MTX, at a 1:20 dosage ratio, and tissue antifolate content was then determined over the subsequent 22 days. We confirm the selective exclusion of AMT from the CNS compartment, while showing equivalent accumulation of AMT and MTX in the RBCs, liver, spleen, kidneys and testes. Finally, we demonstrate that AMT, MTX, and their predominant polyglutamate species are equipotent inhibitors of their target intracellular enzyme dihydrofolate reductase, emphasizing the critical nature of steady-state tissue accumulation in determining the relative cytotoxic potency of these two antifolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angelis-Stoforidis P, Vajda FJ, Christophidis N (1999) Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin Exp Rheumatol 17:313

    PubMed  CAS  Google Scholar 

  2. Balinska M, Galivan J, Coward JK (1981) Efflux of methotrexate and its polyglutamate derivatives from hepatic cells in vitro. Cancer Res 41:2751

    PubMed  CAS  Google Scholar 

  3. Bertino JR (1963) The mechanism of action of the folate antagonists in man. Cancer Res 23:1286

    PubMed  CAS  Google Scholar 

  4. Bettachi CJ, Kamen BA, Cush JJ (1999) Post-methotrexate (MTX) CNS toxicity: symptom reduction with dextromethorphan. Arthritis Rheuma 42:S236

    Google Scholar 

  5. Bleyer WA, Dedrick RL (1977) Clinical pharmacology of intrathecal methotrexate I Pharmacokinetics in nontoxic patients after lumbar injection. Cancer Treat Rep 61:703

    PubMed  CAS  Google Scholar 

  6. Bleyer WA, Nelson JA, Kamen BA (1997) Accumulation of methotrexate in systemic tissues after intrathecal administration. J Pediatr Hematol Oncol 19:530

    Article  PubMed  CAS  Google Scholar 

  7. Cole PD, Drachtman RA, Masterson M, Shenkerman A, Smith AK, Makori B, Kamen BA (2004) Aminopterin can replace methotrexate for children with newly diagnosed acute lymphoblastic leukemia without excessive toxicity [Abstract#1950]. Blood 104:538a

    Google Scholar 

  8. da Costa M, Iqbal MP (1981) The transport and accumulation of methotrexate in human erythrocytes. Cancer 48:2427

    Article  PubMed  CAS  Google Scholar 

  9. Dameshek W, Freedman MH, Steinberg L (1950) Folic acid antagonists in the treatment of acute and subacute leukemia. Blood 5:898

    PubMed  CAS  Google Scholar 

  10. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis & Rheumatism 50:2766

    Article  PubMed  CAS  Google Scholar 

  11. Dervieux T, Furst D, Orentas Lein D, Capps R, Smith K, Caldwell J, Kremer J (2005) Pharmacogenetic and metabolite measurements are associated with clinical status in rheumatoid arthritis patients treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis ard.2004.033399

  12. Ercikan-Abali EA, Waltham MC, Dicker AP, Schweitzer BI, Gritsman H, Banerjee D, Bertino JR (1996) Variants of human dihydrofolate reductase with substitutions at leucine-22: effect on catalytic and inhibitor binding properties. Mol Pharmacol 49:430

    PubMed  CAS  Google Scholar 

  13. Farber S, Toch R, Sears EM, Pinkel D (1956) Advances in chemotherapy of cancer in man. Adv Cancer Res 4:1–71

    Article  PubMed  CAS  Google Scholar 

  14. Freemantle SJ, Moran RG (1997) Transcription of the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem 272:25373

    Article  PubMed  CAS  Google Scholar 

  15. George S, Cichowicz DJ, Shane B (1987) Mammalian folylpoly-gamma-glutamate synthetase 3 Specificity for folate analogues. Biochemistry 26:522

    Article  PubMed  CAS  Google Scholar 

  16. Graham ML, Shuster JJ, Kamen BA, Cheo DL, Harrison MP, Leventhal BG, Pullen DJ, Whitehead VM (1992) Red blood cell methotrexate and folate levels in children with acute lymphoblastic leukemia undergoing therapy: a Pediatric Oncology Group pilot study. Cancer Chemother Pharmacol 31:217

    Article  PubMed  CAS  Google Scholar 

  17. Harvey JW (1989) Erythrocyte Metabolism. In: Kaneko JJ (ed) Clinical biochemistry of domestic animals, 4th edn. Academic, San Diego, pp 196

    Google Scholar 

  18. Hendel J, Nyfors A (1984) Pharmacokinetics of methotrexate in erythrocytes in psoriasis. Eur J Clin Pharmacol 27:607

    Article  PubMed  CAS  Google Scholar 

  19. Jolivet J, Chabner BA (1983) Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate reductase. J Clin Invest 72:773

    Article  PubMed  CAS  Google Scholar 

  20. Kamen BA, Nylen PA, Camitta BM, Bertino JR (1981) Methotrexate accumulation and folate depletion in cells as a possible mechanism of chronic toxicity to the drug. Br J Haematol 49:355

    PubMed  CAS  Google Scholar 

  21. Kamen BA, Takach PL, Vatev R, Caston JD (1976) A rapid, radiochemical-ligand binding assay for methotrexate. Anal Biochem 70:54

    Article  PubMed  CAS  Google Scholar 

  22. Krakower GR, Kamen BA (1983) In situ methotrexate polyglutamate formation in rat tissues. J Pharmacol Exp Ther 227:633

    PubMed  CAS  Google Scholar 

  23. Krakower GR, Kamen BA (1984) The reticulocytic rat: a model for analysis of methotrexate polyglutamate dynamics in situ. J Pharmacol Exp Thera 231:43

    CAS  Google Scholar 

  24. Kristensen K, Nielsen S, Karup Pedersen F, Zak M (2000) Erythrocyte-methotrexate and disease activity in children treated with oral methotrexate for juvenile chronic arthritis. Scand J Rheumatol 29:187

    Article  PubMed  CAS  Google Scholar 

  25. Kuehl M, Brixner DI, Broom AD, Avery TL, Blakley RL (1988) Cytotoxicity, uptake, polyglutamate formation, and antileukemic effects of 8-deaza analogues of methotrexate and aminopterin in mice. Cancer Res 48:1481

    PubMed  CAS  Google Scholar 

  26. Kumar P, Kisliuk RL, Gaumont Y, Nair MG, Baugh CM, Kaufman BT (1986) Interaction of polyglutamyl derivatives of methotrexate, 10-deazaaminopterin, and dihydrofolate with dihydrofolate reductase. Cancer Res 46:5020

    PubMed  Google Scholar 

  27. Leclerc GJ, Barredo JC (2001) Folylpoly-gamma-glutamate synthetase gene mRNA splice variants and protein expression in primary human leukemia cells, cell lines, and normal human tissues. Clinical Cancer Research 7:942

    PubMed  CAS  Google Scholar 

  28. Mahoney DH Jr, Shuster JJ, Nitschke R, Lauer SJ, Steuber CP, Winick N, Camitta B (1998) Acute neurotoxicity in children with B-precursor acute lymphoid leukemia:an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy—a Pediatric Oncology Group study. J Clin Oncol 16:1712

    PubMed  CAS  Google Scholar 

  29. Masson E, Relling MV, Synold TW, Liu Q, Schuetz JD, Sandlund JT, Pui CH, Evans WE (1996) Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo A rationale for high-dose methotrexate. J Clin Invest 97:73

    PubMed  CAS  Google Scholar 

  30. Osborn MJ, Huennekens FM (1958) Enzymatic reduction of dihydrofolic acid. J Biol Chem 233:969

    PubMed  CAS  Google Scholar 

  31. Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, Alcaraz MJ (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol 361:98

    Article  PubMed  CAS  Google Scholar 

  32. Quinn CT, Kamen BA (1996) A biochemical perspective of methotrexate neurotoxicity with insight on nonfolate rescue modalities. J Invest Med 44:522

    CAS  Google Scholar 

  33. Ratliff AF, Wilson J, Hum M, Marling-Cason M, Rose K, Winick N, Kamen BA (1998) Phase I and pharmacokinetic trial of aminopterin in patients with refractory malignancies. J Clin Oncol 16:1458

    PubMed  CAS  Google Scholar 

  34. Rosenblatt DS, Whitehead VM (1983) Methotrexate polyglutamates in cultured human cells. Adv Exp Med Biol 163: 275

    PubMed  CAS  Google Scholar 

  35. Samuels LL, Moccio DM, Sirotnak FM (1985) Similar differential for total polyglutamylation and cytotoxicity among various folate analogues in human and murine tumor cells in vitro. Cancer Res 45:1488

    PubMed  CAS  Google Scholar 

  36. Schmiegelow K, Bjork O, Glomstein A, Gustafsson G, Keiding N, Kristinsson J, Makipernaa A, Rosthoj S, Szumlanski C, Sorensen TM, Weinshilboum R (2003) Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol 21:1332

    Article  PubMed  CAS  Google Scholar 

  37. Schmiegelow K, Schroder H, Gustafsson G, Kristinsson J, Glomstein A, Salmi T, Wranne L (1995) Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology. J Clin Oncol 13:345

    PubMed  CAS  Google Scholar 

  38. Schmiegelow K, Schroder H, Pulczynska MK, Hejl M (1989) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: relation of bone-marrow and hepatotoxicity to the concentration of methotrexate in erythrocytes. Cancer Chemother Pharmacol 25:65

    Article  PubMed  CAS  Google Scholar 

  39. Schmiegelow K, Schroder H, Schmiegelow M (1994) Methotrexate and 6-mercaptopurine maintenance therapy for childhood acute lymphoblastic leukemia: dose adjustments by white cell counts or by pharmacokinetic parameters?. Cancer Chemother Pharmacol 34:209

    Article  CAS  Google Scholar 

  40. Schroder H (1990) In vivo methotrexate kinetics and metabolism in human hematopoietic cells Clinical significance of methotrexate concentrations in erythrocytes. Danish Med Bull 37:22

    PubMed  CAS  Google Scholar 

  41. Schweitzer BI, Srimatkandada S, Gritsman H, Sheridan R, Venkataraghavan R, Bertino JR (1989) Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis. J Biol Chem 264:20786

    PubMed  CAS  Google Scholar 

  42. Sirotnak FM, Donsbach RC (1972) Comparative studies on the transport of aminopterin, methotrexate, and methasquin by the L1210 leukemia cell. Cancer Res 32:2120

    PubMed  CAS  Google Scholar 

  43. Smith A, Hum M, Winick NJ, Kamen BA (1996) A case for the use of aminopterin in treatment of patients with leukemia based on metabolic studies of blasts in vitro. Clin Cancer Res 2:69

    PubMed  CAS  Google Scholar 

  44. Turner FB, Andreassi JL II, Ferguson J, Titus S, Tse A, Taylor SM, Moran RG (1999) Tissue-specific expression of functional isoforms of mouse folypoly-gamma-glutamate synthetase: a basis for targeting folate antimetabolites. Cancer Res 59:6074

    PubMed  CAS  Google Scholar 

  45. Turner FB, Taylor SM, Moran RG (2000) Expression patterns of the multiple transcripts from the folylpolyglutamate synthetase gene in human leukemias and normal differentiated tissues. J Biol Chem 275:35960

    Article  PubMed  CAS  Google Scholar 

  46. Vezmar S, Becker A, Bode U, Jaehde U (2003) Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy 49:92

    Article  PubMed  CAS  Google Scholar 

  47. Whitehead VM, Rosenblatt DS, Vuchich MJ, Shuster JJ, Witte A, Beaulieu D (1990) Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts at diagnosis of childhood acute lymphoblastic leukemia: a pilot prognostic factor analysis. Blood 76:44

    PubMed  CAS  Google Scholar 

  48. Winick N, Shuster JJ, Bowman WP, Borowitz M, Farrow A, Jacaruso D, Buchanan GR, Kamen BA (1996) Intensive oral methotrexate protects against lymphoid marrow relapse in childhood B-precursor acute lymphoblastic leukemia. J Clin Oncol 14:2803

    PubMed  CAS  Google Scholar 

  49. Winick NJ, Kamen BA, Balis FM, Holcenberg J, Lester CM, Poplack DG (1987) Folate and methotrexate polyglutamate tissue levels in rhesus monkeys following chronic low-dose methotrexate. Cancer Drug Deliv 4:25

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PDC is a Damon Runyon-Lilly Clinical Investigator, supported in part by the Damon Runyon Cancer Research Foundation (CI −16-03). BAK is an American Cancer Society Professor. This work was supported in part by an FDA Orphan Products Development grant (FD-R-001832-03) and by the Institute for Children with Cancer and Blood Disorders, New Brunswick, NJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Cole.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00280-006-0234-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, P.D., Alcaraz, M.J., Smith, A.K. et al. Pharmacodynamic properties of methotrexate and AminotrexateTM during weekly therapy. Cancer Chemother Pharmacol 57, 826–834 (2006). https://doi.org/10.1007/s00280-005-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0115-3

Keywords

Navigation