Skip to main content

Advertisement

Log in

GBP1 overexpression is associated with a paclitaxel resistance phenotype

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

In the search for novel genes involved in the paclitaxel resistance phenotype, prior studies of gene expression in paclitaxel-resistant cell lines and their paired drug-sensitive parental lines using high-density Affymetrix GeneChip arrays identified guanylate-binding protein 1 (GBP1) gene as an overexpressed transcript. The GBP1 gene encodes a large GTPase that is induced by interferon gamma (IFN-γ) in a variety of eukaryotic cells. In this report we characterize GBP1 and demonstrate that GBP1 expression is consistently upregulated in 7 of 8 paclitaxel or doxorubicin-resistant human cancer cell lines as compared to its expression in the relevant drug-sensitive parental lines. Analysis of GBP1 expression using the Cancer Profiling Array showed that GBP1 is ubiquitously expressed with no significant difference in expression levels between normal and tumor tissue. Parallel analysis of the Cancer Cell Line Profiling Array determined that GBP1 expression in a majority of cell lines derived from human tumors of different tissue origin was induced to variable levels following exposure to multiple stress agents including paclitaxel and doxorubicin. Importantly, stable expression of a GBP1 transgene in the paclitaxel-sensitive ovarian cancer cell line OVCAR8 was sufficient to confer moderate paclitaxel resistance. Our data suggest that increased expression of the GBP1 gene may play an important role in the development of multi-drug resistance (MDR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3(7):502–516

    Article  PubMed  CAS  Google Scholar 

  2. Ferreira CG, Tolis C, Giaccone G (1999) p53 and chemosensitivity. Ann Oncol 10(9):1011–1021

    Article  PubMed  CAS  Google Scholar 

  3. Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3(1):1–19

    Article  PubMed  CAS  Google Scholar 

  4. Seiden MV, Muggia F, Astrow A, Matulonis U, Campos S, Roche M, Sivret J, Rusk J, Barrett E (2004) A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 93(1):229–232

    Article  PubMed  CAS  Google Scholar 

  5. Penson RT, Oliva E, Skates SJ, Glyptis T, Fuller AF Jr, Goodman A, Seiden MV (2004) Expression of multidrug resistance-1 protein inversely correlates with paclitaxel response and survival in ovarian cancer patients: a study in serial samples. Gynecol Oncol 93(1):98–106

    Article  PubMed  CAS  Google Scholar 

  6. McGuire WP, Blessing JA, Moore D, Lentz SS, Photopulos G (1996) Paclitaxel has moderate activity in squamous cervix cancer. A Gynecologic Oncology Group study. J Clin Oncol 14(3):792–795

    PubMed  CAS  Google Scholar 

  7. Loe DW, Deeley RG, Cole SP (1996) Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer 32A(6):945–957

    Article  Google Scholar 

  8. Volm M (1998) Multidrug resistance and its reversal. Anticancer Res 18(4C):2905–2917

    PubMed  CAS  Google Scholar 

  9. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334(1):1–6

    Article  PubMed  CAS  Google Scholar 

  10. Brockstein B, Haraf DJ, Stenson K, Fasanmade A, Stupp R, Glisson B, Lippman SM, Ratain MJ, Sulzen L, Klepsch A, Weichselbaum RR, Vokes EE (1998) Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, and hydroxyurea with granulocyte colony-stimulating factor support for patients with poor-prognosis cancer of the head and neck. J Clin Oncol 16(2):735–744

    PubMed  CAS  Google Scholar 

  11. Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56(5):1091–1097

    PubMed  CAS  Google Scholar 

  12. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272(27):17118–17125

    Article  PubMed  CAS  Google Scholar 

  13. Sale S, Sung R, Shen P, Yu K, Wang Y, Duran GE, Kim JH, Fojo T, Oefner PJ, Sikic BI (2002) Conservation of the class I beta-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol Cancer Ther 1(3):215–225

    PubMed  CAS  Google Scholar 

  14. Nicoletti MI, Valoti G, Giannakakou P, Zhan Z, Kim JH, Lucchini V, Landoni F, Mayo JG, Giavazzi R, Fojo T (2001) Expression of beta-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-anticancer drug screen: correlation with sensitivity to microtubule active agents. Clin Cancer Res 7(9):2912–2922

    PubMed  CAS  Google Scholar 

  15. Lamendola DE, Duan Z, Penson RT, Oliva E, Seiden MV (2003) Beta tubulin mutations are rare in human ovarian carcinoma. Anticancer Res 23(1B):681–686

    PubMed  CAS  Google Scholar 

  16. Maeno K, Ito K, Hama Y, Shingu K, Kimura M, Sano M, Nakagomi H, Tsuchiya S, Fujimori M (2003) Mutation of the class I beta-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett 198(1):89–97

    Article  PubMed  CAS  Google Scholar 

  17. Urano N, Fujiwara Y, Hasegawa S, Miyoshi Y, Noguchi S, Takiguchi S, Yasuda T, Yano M, Monden M (2003) Absence of beta-tubulin gene mutation in gastric carcinoma. Gastric Cancer 6(2):108–112

    PubMed  CAS  Google Scholar 

  18. Duan Z, Lamendola DE, Duan Y, Yusuf RZ, Seiden MV (2005) Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. Cancer Chemother Pharmacol 55(3):277–285

    Article  PubMed  CAS  Google Scholar 

  19. Duan Z, Brakora KA, Seiden MV (2004) MM-TRAG (MGC4175), a novel intracellular mitochondrial protein, is associated with the taxol- and doxorubicin-resistant phenotype in human cancer cell lines. Gene 340(1):53–59

    Article  PubMed  CAS  Google Scholar 

  20. Schwemmle M, Staeheli P (1994) The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol Chem 269(15):11299–11305

    PubMed  CAS  Google Scholar 

  21. Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C (2000) Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403(6769):567–571

    Article  PubMed  CAS  Google Scholar 

  22. Guenzi E, Topolt K, Lubeseder-Martellato C, Jorg A, Naschberger E, Benelli R, Albini A, Sturzl M (2003) The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. Embo J 22(15):3772–3782

    Article  PubMed  CAS  Google Scholar 

  23. Lubeseder-Martellato C, Guenzi E, Jorg A, Topolt K, Naschberger E, Kremmer E, Zietz C, Tschachler E, Hutzler P, Schwemmle M, Matzen K, Grimm T, Ensoli B, Sturzl M (2002) Guanylate-binding protein-1 expression is selectively induced by inflammatory cytokines and is an activation marker of endothelial cells during inflammatory diseases. Am J Pathol 161(5):1749–1759

    PubMed  CAS  Google Scholar 

  24. Anderson SL, Carton JM, Lou J, Xing L, Rubin BY (1999) Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256(1):8–14

    Article  PubMed  CAS  Google Scholar 

  25. Abbaszadegan MR, Foley NE, Gleason-Guzman MC, Dalton WS (1996) Resistance to the chemosensitizer verapamil in a multi-drug-resistant (MDR) human multiple myeloma cell line. Int J Cancer 66(4):506–514

    Article  PubMed  CAS  Google Scholar 

  26. Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV (1999) Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 5(11):3445–3453

    PubMed  CAS  Google Scholar 

  27. Duan Z, Feller AJ, Toh HC, Makastorsis T, Seiden MV (1999) TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 229(1–2):75–81

    Article  PubMed  CAS  Google Scholar 

  28. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47(4):936–942

    PubMed  CAS  Google Scholar 

  29. Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM, Deeley RG (1994) Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 54(22):5902–5910

    PubMed  CAS  Google Scholar 

  30. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95(26):15665–15670

    Article  PubMed  CAS  Google Scholar 

  31. Isonishi S, Hom DK, Thiebaut FB, Mann SC, Andrews PA, Basu A, Lazo JS, Eastman A, Howell SB (1991) Expression of the c-Ha-ras oncogene in mouse NIH 3T3 cells induces resistance to cisplatin. Cancer Res 51(21):5903–5909

    PubMed  CAS  Google Scholar 

  32. Miyashita T, Reed JC (1992) bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52(19):5407–5411

    PubMed  CAS  Google Scholar 

  33. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1993) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24(2):85–95

    Article  PubMed  CAS  Google Scholar 

  34. Duan Z, Lamendola DE, Penson RT, Kronish KM, Seiden MV (2002) Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine 17(5):234–242

    Article  PubMed  CAS  Google Scholar 

  35. Duan Z, Duan Y, Lamendola DE, Yusuf RZ, Naeem R, Penson RT, Seiden MV (2003) Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res 9(7):2778–2785

    PubMed  CAS  Google Scholar 

  36. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348(6297):125–132

    Article  PubMed  CAS  Google Scholar 

  37. Praefcke GJ, Geyer M, Schwemmle M, Robert Kalbitzer H, Herrmann C (1999) Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J Mol Biol 292(2):321–332

    Article  PubMed  CAS  Google Scholar 

  38. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5(2):133–147

    Article  PubMed  CAS  Google Scholar 

  39. Naschberger E, Werner T, Vicente AB, Guenzi E, Topolt K, Leubert R, Lubeseder-Martellato C, Nelson PJ, Sturzl M (2004) Nuclear factor-kappaB motif and interferon-alpha-stimulated response element co-operate in the activation of guanylate-binding protein-1 expression by inflammatory cytokines in endothelial cells. Biochem J 379(Pt2):409–420

    Article  PubMed  CAS  Google Scholar 

  40. Guenzi E, Topolt K, Cornali E, Lubeseder-Martellato C, Jorg A, Matzen K, Zietz C, Kremmer E, Nappi F, Schwemmle M, Hohenadl C, Barillari G, Tschachler E, Monini P, Ensoli B, Sturzl M (2001) The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. Embo J 20(20):5568–5577

    Article  PubMed  CAS  Google Scholar 

  41. Luker KE, Pica CM, Schreiber RD, Piwnica-Worms D (2001) Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells. Cancer Res 61(17):6540–6547

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant CA 89150 (to M.V. Seiden)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z., Foster, R., Brakora, K.A. et al. GBP1 overexpression is associated with a paclitaxel resistance phenotype. Cancer Chemother Pharmacol 57, 25–33 (2006). https://doi.org/10.1007/s00280-005-0026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0026-3

Keywords

Navigation