Skip to main content
Log in

Efficacy of an intratumoral controlled release formulation of clusterin antisense oligonucleotide complexed with chitosan containing paclitaxel or docetaxel in prostate cancer xenograft models

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To develop and evaluate an injectable, controlled release delivery system for a phosphorothioate antisense oligonucleotide (ASO) based on complexed ASO:chitosan dispersed in a biodegradable polymeric paste for intratumoral treatment of solid tumors.

Methods

Clusterin ASO was complexed with chitosan particles and incorporated into a paste based on a 60:40 blend of methoxy-poly(ethylene glycol) (MePEG) and triblock copolymer of poly(D,L-lactic acid-co-caprolactone)-PEG-(D,L-lactic acid-co-caprolactone). In vitro release profiles of clusterin ASO into phosphate-buffered saline at 37°C were obtained under sink conditions and assayed by anionic exchange high-performance liquid chromatography. In vivo efficacy studies were carried out in human prostate PC-3 and LNCaP tumors grown subcutaneously in mice. Paste formulations of clusterin ASO with or without paclitaxel or docetaxel were injected intratumorally and tumor volumes and serum prostate specific antigen (PSA) levels were measured.

Results

Controlled release of clusterin ASO was obtained over several weeks. The rate and extent of ASO release was proportional to the ratio of ASO to chitosan in the paste. Treatment of mice bearing PC-3 tumors with clusterin ASO plus paclitaxel or docetaxel paste had reduced mean tumor volume by greater than 50% at 4 weeks. Treatment of mice bearing LNCaP tumors with clusterin ASO plus paclitaxel reduced mean tumor volume and serum PSA level by more than 50% and 70%, respectively.

Conclusions

Complexation of clusterin ASO with chitosan and incorporation into polymeric paste with paclitaxel or docetaxel produced in vitro controlled release of the ASO and in vivo efficacy over 4 weeks following a single intratumoral injection in solid human prostate tumors in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASO:

Phosphorothioate antisense oligonucleotide

CC:

Chitosan complexes

CC paste:

Formulations of an injectable polymeric paste loaded with chitosan complexes

MePEG:

Methoxy-poly(ethylene glycol)

MMO:

Mismatch oligonucleotide phosphorothioate

PEG:

Poly(ethylene glycol)

PLC:

Random poly(D,L-lactic acid-co-caprolactone) copolymer

PLC-PEG-PLC:

Triblock copolymer of PLC and PEG in the form of PLC-PEG-PLC

PSA:

Prostate specific antigen

Trizma:

Tris(hydroxymethyl) aminomethane hydrochloride

References

  1. Veeramachaneni NK, Kubokura H, Lin L, Pippin JA, Patterson GA, Drebin JA, Battafarano RJ (2004) Down-regulation of beta catenin inhibits the growth of esophageal carcinoma cells. J Thorac Cardiovasc Surg 127:92–98

    CAS  PubMed  Google Scholar 

  2. Pennati M, Binda M, Colella G, Zoppe M, Folini M, Vignati S, Valentini A, Citti L, De Cesare M, Pratesi G, Giacca M, Daidone MG, Zaffaroni N (2004) Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene 23:386–394

    CAS  PubMed  Google Scholar 

  3. Caplen NJ, Mousses S (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 1002:56–62

    CAS  PubMed  Google Scholar 

  4. Rothenfusser S, Hornung V, Ayyoub M, Britsch S, Towarowski A, Krug A, Sarris A, Lubenow N, Speiser D, Endres S, Hartmann G (2004) CpG-A and CpG-B oligonucleotides differentially enhance human peptide-specific primary and memory CD8+ T-cell responses in vitro. Immunobiology 103:2162–2169

    CAS  Google Scholar 

  5. Grate D, Wilson C (2001) Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 9:2565–2570

    CAS  PubMed  Google Scholar 

  6. Cho-Chung YS, Gewirtz AM, Stein CA (2003) Introduction. Ann N Y Acad Sci 1002:xi–xii

    Google Scholar 

  7. Wang L, Prakash RK, Stein CA, Koehn RK, Ruffner DE (2003) Progress in the delivery of therapeutic oligonucleotides: organ/cellular distribution and targeted delivery of oligonucleotides in vivo. Antisense Nucleic Acid Drug Dev 13:169–189

    CAS  PubMed  Google Scholar 

  8. Zellweger T, Miyake H, Cooper S, Chi K, Conklin BS, Monia BP, Gleave ME (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298:934–940

    CAS  PubMed  Google Scholar 

  9. Ferreiro MG, Tillman L, Hardee G, Bodmeier R (2001) Characterization of complexes of an antisense oligonucleotide with protamine and poly-L-lysine salts. J Control Release 73:381–390

    PubMed  Google Scholar 

  10. Robaczewska M, Guerret S, Remy J-S, Chemin I, Offensperger W-B, Chevallier M, Behr J-P, Podhajska AJ, Blum HE, Trepo C, Cova L (2001) Inhibition of hepadnaviral replication by polyethylenimine-based intravenous delivery of antisense phosphodiester oligodeoxynucleotides to the liver. Gene Ther 8:874–881

    CAS  PubMed  Google Scholar 

  11. Ferreiro MG, Tillman LG, Hardee G, Bodmeier R (2002) Alginate/poly-L-lysine microparticles for the intestinal delivery of antisense oligonucleotides. Pharm Res 19:755–764

    CAS  PubMed  Google Scholar 

  12. De Rosa G, Quaglia F, Bochot A, Ungaro F, Fattal E (2003) Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules 4:529–536

    CAS  PubMed  Google Scholar 

  13. Mahato RI, Lee M, Han S, Maheshwari A, Kim SW (2001) Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol Ther 4:130–138

    CAS  PubMed  Google Scholar 

  14. Jones SE, Jomary C (2002) Molecules in focus: clusterin. Int J Biochem Cell Biol 34:427–431

    CAS  PubMed  Google Scholar 

  15. Gleave ME, Miyake H, Zellweger T, Chi K, July L, Nelson C, Rennie P (2001) Use of antisense oligonucleotides targeting the antiapoptotic gene clusterin/testosterone-repressed prostate message 2 to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology 58 [Suppl 2A]:39–49

    CAS  PubMed  Google Scholar 

  16. Miyake H, Nelson C, Rennie PS, Gleave ME (2000) Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60:170–176

    CAS  PubMed  Google Scholar 

  17. Miyake H, Hara I, Kamidono S, Gleave M, Eto H (2003) Resistance to cytotoxic chemotherapy-induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol Rep 10:469–473

    CAS  PubMed  Google Scholar 

  18. Zellweger T, Kiyama S, Chi K, Miyake H, Adomat H, Skov K, Gleave ME (2003) Overexpression of the cytoprotective protein clusterin decreases radiosensitivity in the human LNCaP prostate tumour model. BJU Int 92:463–469

    CAS  PubMed  Google Scholar 

  19. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave ME (2002) Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50:179–188

    CAS  PubMed  Google Scholar 

  20. Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES (2004) Silencing expression of the clusterin/apolipoprotein J gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability and cell sensitization to genotoxic and oxidative stress. Cancer Res 64:1834–1842

    CAS  PubMed  Google Scholar 

  21. Miyake H, Chi KN, Gleave ME (2000) Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res 6:1655–1663

    CAS  PubMed  Google Scholar 

  22. Miyake H, Nelson C, Rennie PS, Gleave ME (2000) Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res 60:2547–2554

    CAS  PubMed  Google Scholar 

  23. Crooke ST (2000) Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic Acid Drug Dev 10:123–126

    CAS  PubMed  Google Scholar 

  24. Kuruma H, Fujita T, Shitara T, Egawa S, Yokoyama E, Baba S (2003) Weekly paclitaxel plus estramustine combination therapy in hormone-refractory prostate cancer: a pilot study. Int J Urol 10:470–475

    CAS  PubMed  Google Scholar 

  25. Sinibaldi VJ, Carducci MA, Moore-Cooper S, Laufer M, Zahurak M, Eisenberger MA (2002) Phase II evaluation of docetaxel plus one-day oral estramustine phosphate in the treatment of patients with androgen independent prostate carcinoma. Cancer 94:1457–1465

    CAS  PubMed  Google Scholar 

  26. Lapidus RG, Dang W, Rosen DM, Gady AM, Zabelinka Y, O’Meally R, DeWeese TL, Denmeade SR (2004) Anti-tumor effect of combination therapy with intratumoral controlled-release paclitaxel (Paclimer microspheres) and radiation. Prostate 58:291–298

    CAS  PubMed  Google Scholar 

  27. Jackson JK, Gleave ME, Yago V, Beraldi E, Hunter WL, Burt HM (2000) The suppression of human prostate tumor growth in mice by the intratumoral injection of a slow-release polymeric paste formulation of paclitaxel. Cancer Res 60:4146–4151

    CAS  PubMed  Google Scholar 

  28. Jackson JK, Zhang X, Llewellen S, Hunter WL, Burt HM (2004) The characterization of novel polymeric paste formulations for intratumoral delivery. Int J Pharm 270:185–198

    CAS  PubMed  Google Scholar 

  29. Lee KY, Ha WS, Park WH (1995) Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16:1211–1216

    CAS  PubMed  Google Scholar 

  30. Richardson SC, Kolbe HV, Duncan R (1999) Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 178:231–243

    CAS  PubMed  Google Scholar 

  31. Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191

    CAS  PubMed  Google Scholar 

  32. Venkatesh S, Smith TJ (1998) Chitosan-membrane interactions and their probable role in chitosan-mediated transfection. Biotechnol Appl Biochem 27(Pt 3):265–267

    CAS  PubMed  Google Scholar 

  33. Park IK, Kim TH, Kim SI, Park YH, Kim WJ, Akaike T, Cho CS (2003) Visualization of transfection of hepatocytes by galactosylated chitosan-graft-poly(ethylene glycol)/DNA complexes by confocal laser scanning microscopy. Int J Pharm 257:103–110

    CAS  PubMed  Google Scholar 

  34. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272

    CAS  PubMed  Google Scholar 

  35. Ishii T, Okahata Y, Sato T (2001) Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta 1514:51–64

    CAS  PubMed  Google Scholar 

  36. Chen J, Yang W-L, Qian J, Xue J-L, Fu S-K, Lu D-R (2003) Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J Gastroenterol 20:112–116

    CAS  Google Scholar 

  37. Erbacher P, Zou S, Bettinger T, Steffan A-M, Remy J-S (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    CAS  PubMed  Google Scholar 

  38. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080

    CAS  PubMed  Google Scholar 

  39. Mao HQ, Roy K, Troung L, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    CAS  PubMed  Google Scholar 

  40. Köping-Höggård M (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:130–141

    PubMed  Google Scholar 

  41. Liggins RT, Burt HM (2001) Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222:19–33

    CAS  PubMed  Google Scholar 

  42. Winternitz CI, Jackson JK, Oktaba AM, Burt HM (1996) Development of a polymeric surgical paste formulation for taxol. Pharm Res 13:368–375

    CAS  PubMed  Google Scholar 

  43. Papisov IM, Litmanovich AA (1998) Molecular “recognition” in interpolymer interactions and matrix polymerization. Adv Polym Sci 90:139–179

    Google Scholar 

  44. Hayatsu H, Kubo T, Tanaka Y, Negishi K (1997) Polynucleotide-chitosan complex an insoluble but reactive form of polynucleotide. Chem Pharm Bull 45:1363–1368

    CAS  PubMed  Google Scholar 

  45. Vinogradov SV, Bronich TK, Kabanov AV (1998) Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem 9:805–812

    CAS  PubMed  Google Scholar 

  46. Ho H-A, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed 41:1548–1551

    CAS  Google Scholar 

  47. Ojugo ASE, McSheehy PMJ, McIntyre DJO, McCoy C, Stubbs M, Leach MO, Judson IR, Griffiths JR (1999) Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed 12:495–504

    CAS  PubMed  Google Scholar 

  48. McSheehy PMJ, Troy H, Kelland LR, Judson IR, Leach MO, Griffiths JR (2003) Increased tumour extracellular pH induced by Bafilomycin A1 inhibits tumour growth and mitosis in vivo and alters 5-fluorouracil pharmacokinetics. Eur J Pharm Sci 39:532–540

    CAS  Google Scholar 

  49. Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW, Bhujwalla ZM, Gillies RJ (1999) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol 57:309–312

    CAS  PubMed  Google Scholar 

  50. Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by research funding from ARC Pharmaceuticals Inc. to H.M. Burt and a grant from the Terry Fox Program Project of the National Cancer Institute of Canada to M.E. Gleave. A technology grant from the Science Council of British Columbia to ARC Pharmaceuticals Inc. is gratefully acknowledged. We thank Virginia Yago for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Burt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springate, C.M.K., Jackson, J.K., Gleave, M.E. et al. Efficacy of an intratumoral controlled release formulation of clusterin antisense oligonucleotide complexed with chitosan containing paclitaxel or docetaxel in prostate cancer xenograft models. Cancer Chemother Pharmacol 56, 239–247 (2005). https://doi.org/10.1007/s00280-004-0997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0997-5

Keywords

Navigation