Skip to main content

Advertisement

Log in

A phase IB clinical and pharmacokinetic study of the angiogenesis inhibitor SU5416 and paclitaxel in recurrent or metastatic carcinoma of the head and neck

  • Clinical Trial Report
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

SU5416 is a novel small organic molecule that non-competitively inhibits the phosphorylation of the VEGF tyrosine kinase receptor, Flk-1. This phase IB study was performed to determine the safety, pharmacokinetics, and preliminary efficacy of the combination of SU5416 and paclitaxel in recurrent or metastatic carcinoma of the head and neck.

Methods

Enrolled in the study were 12 patients with biopsy-proven recurrent or metastatic carcinoma of the head and neck. Six patients received intravenous SU5416 110 mg/m2 on days 1, 15, 18, 22 and 25, and paclitaxel 70 mg/m2 on days 8, 15 and 22. Since two patients experienced a dose-limiting toxicity (DLT) in cohort 1, the next six patients received identical treatment as above except the paclitaxel dose was reduced to 55 mg/m2 per week.

Results

A total of 42 cycles at two different dose levels were given. In cohort 1 there were two deep venous thromboses that were DLTs. In the second cohort there was a DLT consisting of a transient ischemic attack after receiving SU5416. Most of the other toxicities seen were grade 1 or 2 in nature and consisted of headache, facial flushing, and fatigue. Two patients developed extensive ulcerative cavities at sites of prior radiation. There were no significant changes in the pharmacokinetic parameters of SU5416 given with paclitaxel. Four patients had prolonged freedom from progression of 18, 28, 42, and 60 weeks duration.

Conclusions

The combination of SU5416 with paclitaxel had a higher than expected incidence of thromboembolic events and prophylactic anticoagulation should be considered for future trials that combine an angiogenesis inhibitor with cytotoxic chemotherapy. Although the future development of SU5416 as a chemotherapeutic agent is unclear, there was a clinical benefit seen with this combination in 36% of the patients. This trial supports the use of developing antiangiogenic combinations, using molecular targeted agents, in head and neck carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schantz SP, Harrison LB, Forastiere AA (2001) Cancer of the head and neck. In: DeVita VT, Hillman S, Rosenberg SA (eds) Cancer: principles and practices of oncology, 6th edn. Lippincott Williams & Wilkins, Philadelphia Baltimore, p 804

    Google Scholar 

  2. Al-Sarraf M (1987) Chemotherapeutic management of head and neck cancer. Cancer Metastasis Rev 6:191

    Google Scholar 

  3. Pinto HA, Jacobs CJ (1991) Chemotherapy for recurrent and metastatic head and neck cancer. Hematol Oncol Clin North Am 5:667

    CAS  PubMed  Google Scholar 

  4. Browman GP, Cronin L (1994) Standard chemotherapy in squamous cell head and neck cancer: what we have learned from randomized trials. Semin Oncol 21:311

    CAS  PubMed  Google Scholar 

  5. Veronosei A, Zagonel V, Rirelli U, et al (1985) High dose versus low dose cisplatin in advanced head and neck squamous carcinoma. A randomized study. J Clin Oncol 3:1105

    PubMed  Google Scholar 

  6. Al-Sarraf M (1990) Management strategies in head and neck cancer: the role of carboplatin. In: Bunns PA Jr, Cannetta R, Ozols PF, Rozencweig M (eds) Current perspectives and future directions. Saunders, Philadelphia

    Google Scholar 

  7. Jacobs C, Lyman G, Velez-Garcia E, et al (1992) A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J Clin Oncol 10:257

    CAS  PubMed  Google Scholar 

  8. Forastiere A, Metch B, Schuller D, et al (1992) Randomized comparison of cisplatin and 5-fluorouracil versus carboplatin + 5-fluorouracil versus methotrexate in advanced squamous cell carcinoma of the head and neck. J Clin Oncol 10:1245

    CAS  PubMed  Google Scholar 

  9. Clavel M, Vermorken JB, Congetti F, et al (1994) Randomized comparison of cisplatin, methotrexate, bleomycin, and vincristine (CABO) versus cisplatin, and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann Oncol 5:521

    CAS  PubMed  Google Scholar 

  10. Adamo V, Maisano R, Laudani A, et al (1999) Phase II study of paclitaxel and cisplatin in advanced and recurrent head and neck cancer. Eur J Cancer 35:S178

    Article  Google Scholar 

  11. Licitra L, Capri G, Fulfaro F, et al (1997) Biweekly paclitaxel and cisplatin in patients with advanced head and neck carcinoma: a phase II trial. Ann Oncol 8:1157

    Article  CAS  PubMed  Google Scholar 

  12. Foutzilas G, Skarlos D, Athanassiades A, et al (1997) Paclitaxel by three-hour infusion and carboplatin in advanced carcinoma of the nasopharynx and other sites of the head and neck: a phase II study conducted by the Hellenic Cooperative Oncology Group. Ann Oncol 8:451

    Article  PubMed  Google Scholar 

  13. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell J, et al (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106

    CAS  PubMed  Google Scholar 

  14. Stopeck A, Sheldon, M, Vahedian M, Cropp G, Gosalia R, Hannah A (2002) Results of a phase I dose-escalating study of the antiangiogenic agent, SU5416, in patients with advanced malignancies. Clin Cancer Res 8:2798–2805

    CAS  PubMed  Google Scholar 

  15. Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332:1004–1014

    Article  CAS  PubMed  Google Scholar 

  16. Belotti D, Vergani V, Drudis T, Borsotti P, et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    CAS  PubMed  Google Scholar 

  17. Sweeney C, Sissions SE, Nakshatri H, Sledge GW, et al (2000) Overcoming resistance to the anti-angiogenic properties of docetaxel induced by endothelial cell stimulation (abstract 4110). Proc Am Assoc Cancer Res 41:647

    Google Scholar 

  18. Hotchkiss K, Ashton A, Sparano J, Schwarz EL, et al (2000) Inhibition of endothelial cell function by docetaxel (abstract 4111). Proc Am Assoc Cancer Res 41:647

    Google Scholar 

  19. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105(8):R15–R24

    CAS  PubMed  Google Scholar 

  20. Therasse P, Arbcuk SG, Eisenhauer EA, Wanders J, Kaplan RS, et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  21. Kuenen BC, Rosen L, Smit EF, Parson MR, Levi M, Ruijter R, Huisman H, Kedde, Noordhuis P, van der Vijgh WJ, Peters GJ, Cropp GF, Scigalla P, Hoekman K, Pinedo HM, Giaccone G (2002) Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 20:1657–1667

    Article  CAS  PubMed  Google Scholar 

  22. Willey TA, Bekos EJ, Gaver RC, Duncan GF, Tay LK, Beijnen JH, Farmen RH (1993) High-performance liquid chromatographic procedure for the quantitative determination of paclitaxel (Taxol) in human plasma. J Chromatogr 621:231–238

    Article  CAS  PubMed  Google Scholar 

  23. Gilbaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Dekker, New York

    Google Scholar 

  24. Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  25. Sonnichsen DS, Relling MV (1994) Clinical pharmacokinetics of paclitaxel. Clin Pharmacokinet 27:256–269

    CAS  PubMed  Google Scholar 

  26. Huizing MT, Vermorken JB, Rosing H, Bokkel WW, Huinink, Mandjes I, Pinedo HM, Beijnen JH (1995) Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: a European Cancer Centre (ECC) trial. Ann Oncol 6:699–704

    CAS  PubMed  Google Scholar 

  27. Longnecker SM, Donehower RC, Cates AE, Chen TL, Brundrett RB, Grochow LB, Ettinger DS, Colvin M (1987) High-performance liquid chromatographic assay for taxol in human plasma and urine and pharmacokinetics in a phase I trial. Cancer Treat Rep 71:53–59

    CAS  PubMed  Google Scholar 

  28. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  29. Folkman J (1995) Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763

    Article  CAS  PubMed  Google Scholar 

  30. Dickinson AJ, Fox SB, Persad RA, Hollyer J, Sibley GN, Harris A (1994) Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br J Urol 74:762–766

    CAS  PubMed  Google Scholar 

  31. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    CAS  PubMed  Google Scholar 

  32. Williams JK, Carlson GW, Cohen C, Derose PB, Hunter S, Jurkiewicz MJ (1994) Tumor angiogenesis as a prognostic factor in oral cavitary tumors. Am J Surg 168:373–380

    CAS  PubMed  Google Scholar 

  33. Cropp GF, Hannah AL (2000) SU5416, a molecularly targeted novel anti-angiogenesis drug: clinical pharmacokinetics and safety review (abstract 262). 11th NCI-EORTC-AACR Symposium on new drugs in cancer therapy, 7–10 November. Clin Cancer Res 6 [Suppl 11]:95

    Google Scholar 

  34. Kuenen BC, Rosen L, Smit E, Parson ML, Ruijiter R, et al (2002) Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 20(6):1657–1667

    Article  CAS  PubMed  Google Scholar 

  35. Kuenen BC, Levi M, Meijers JCM, van Hinsbergh VWM, Berkof J, Kakkar AK, Hoekman K, Pineodo HM (2003) Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. J Clin Oncol 21:2192–2198

    Article  CAS  PubMed  Google Scholar 

  36. Li W, Keller G (2000) VEGF nuclear accumulation correlates with phenotypical changes in endothelial cells. J Cell Sci 113:1525–1534

    CAS  PubMed  Google Scholar 

  37. Abe K, Shoji M, Chen J, et al (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci U S A 96:8663–8668

    Article  CAS  PubMed  Google Scholar 

  38. Calnek DS, Grinnell BW (1998) Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor. Exp Cell Res 238:294–298

    Article  CAS  PubMed  Google Scholar 

  39. Brock TA, Dvorak HF, Senger DR (1991) Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol 138:213–221

    CAS  PubMed  Google Scholar 

  40. Shen BQ, Lee DY, Zioncheck TF (1999) Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J Biol Chem 274:33057–33063

    Article  CAS  PubMed  Google Scholar 

  41. Hood JD, Meininger CJ, Ziche M, et al (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274:H1054–H1058

    CAS  PubMed  Google Scholar 

  42. Mandriota SJ, Pepper MS (1997) Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J Cell Sci 110:2293–2302

    CAS  PubMed  Google Scholar 

  43. Pepper MS, Ferrara N, Orci L, et al (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181:902–906

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out in the General Clinical Research Center. Supported by NIH grants U01 CA62502, M01 RR-00080-36, and P30 CA 43703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Cooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, M.M., Tserng, KY., Makar, V. et al. A phase IB clinical and pharmacokinetic study of the angiogenesis inhibitor SU5416 and paclitaxel in recurrent or metastatic carcinoma of the head and neck. Cancer Chemother Pharmacol 55, 295–300 (2005). https://doi.org/10.1007/s00280-004-0871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0871-5

Keywords

Navigation