Skip to main content

Advertisement

Log in

Synergistic killing of human leukemia cells by antioxidants and trichostatin A

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Antioxidants and trichostatin A (TSA) are promising anticancer drugs, and are capable of enhancing the neoplastic toxicity of other chemicals that exert anticancer activity via different mechanisms. Since antioxidants and TSA (the specific inhibitor of histone deacetylase) are believed to combat cancer via different mechanisms, we sought to determine whether combining them would improve their anticancer activity in human leukemia cells (HL-60).

Materials and methods

HL-60 cells were treated with antioxidants (ascorbic acid, AA and N-acetyl-cysteine, NAC), TSA or their combination, and cell proliferation arrest, lactate dehydrogenase (LDH) release and cell viability were measured as indicators of cell damage. Accumulation of reactive oxygen species (ROS) and the acetylation of histones were also measured.

Results

The cytotoxicity of AA, NAC and TSA increased in a time- and dose-dependent manner. AA (1, 2 and 4 mM) and NAC (0.2, 0.5 and 1 mM) were able to diminish ROS generation but showed no influence on histone acetylation in HL-60 cells. In contrast, TSA (20, 50, 100 and 200 nM) did not inhibit ROS generation but significantly increased histone acetylation, indicating a possible role for both scavenging ROS and increasing histone acetylation in the induction of cell death in HL-60 cells. This conclusion was further confirmed by the finding that the combination of antioxidant and TSA not only diminished ROS generation, but also increased histone acetylation, and hence showed greater cytotoxicity in HL-60 cells than either component alone.

Conclusions

Our findings show that combining antioxidants and TSA can enhance their neoplastic toxicity at least in human leukemia HL-60 cells, providing a new approach to the design of chemotherapy strategies and the development of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2a–f
Fig. 3a–f
Fig. 4a–e
Fig. 5a–e
Fig. 6a–f

Similar content being viewed by others

References

  1. Deshpande SS, Irani K (2002) Oxidant signalling in carcinogenesis: a commentary. Hum Exp Toxicol 21:63–64

    Article  CAS  PubMed  Google Scholar 

  2. Park CH, Amare M, Savin MA, Hoogstraten B (1980) Growth suppression of human leukemic cells in vitro by l-ascorbic acid. Cancer Res 40:1062–1065

    CAS  PubMed  Google Scholar 

  3. Park CH, Kimler BF (1991) Growth modulation of human leukemic, preleukemic, and myeloma progenitor cells by l-ascorbic acid. Am J Clin Nutr 54:1241S–1246S

    CAS  PubMed  Google Scholar 

  4. Kang J, Shi Y, Zheng R (1999) Effects of ascorbic acid on human hepatoma cell proliferation and redifferentiation. Acta Pharmacol Sin 20:1019–1024

    CAS  Google Scholar 

  5. Kang J, Shi Y, Zheng R (2000) Effects of ascorbic acid and dl-alpha-tocopherol on human hepatoma cell proliferation and redifferentiation. Acta Pharmacol Sin 21:348–352

    CAS  PubMed  Google Scholar 

  6. Riordan NH, Riordan HD, Meng YL, Jackson JA (1995) Intravenous ascorbate as a tumor cytotoxic chemotherapeutic agent. Med Hypotheses 44:207–213

    Article  CAS  PubMed  Google Scholar 

  7. Riordan NH, Riordan HD, Casciari JP (2000) Clinical and experimental experiences with intravenous vitamin C. J Orthomol Med 5:201–213

    Google Scholar 

  8. Prasad KN, Hernandez C, Edwards-Prasad J, Nelson J, Borus T, Robinson WA (1994) Modification of the effect of tamoxifen, cisplatin, DTIC and interferon-2b on human melanoma cells in culture by a mixture of vitamins. Nutr Cancer 22:233–245

    CAS  PubMed  Google Scholar 

  9. Prasad KN, Kumar A, Kochupillai V, Cole WC (1999) High doses of multiple antioxidant vitamins: essential ingredients in improving the efficacy of standard cancer therapy. J Am Coll Nutr 18:13–25

    CAS  PubMed  Google Scholar 

  10. Cameron E, Pauling L (1976) Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 73:3685–3689

    CAS  PubMed  Google Scholar 

  11. Drisko JA, Chapman J, Hunter VJ (2003) The use of antioxidant therapies during chemotherapy. Gynecol Oncol 88:434–439

    Article  CAS  PubMed  Google Scholar 

  12. Conklin KA (2000) Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 37:1–18

    Article  CAS  PubMed  Google Scholar 

  13. McCall MR, Frei B (1999) Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic Biol Med 26:1034–1053

    Article  CAS  PubMed  Google Scholar 

  14. Prasad KN, Cole W, Hoveland P (1998) Cancer prevention studies: past, present, and future. Nutrition 14:197–210

    Article  CAS  PubMed  Google Scholar 

  15. Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, Coffey RJ (1997) Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21 WAF1/CIP1 via C/EBPβ. Nat Med 3:1233–1241

    CAS  PubMed  Google Scholar 

  16. Weijl NI, Cleton FJ, Osanto S (1997) Free radicals and antioxidants in chemotherapy induced toxicity. Cancer Treat Rev 23:209–240

    Article  CAS  PubMed  Google Scholar 

  17. Labriola D, Livingston R (1999) Possible interactions between dietary antioxidants and chemotherapy. Oncology 13:1003–1012

    CAS  PubMed  Google Scholar 

  18. Salganik RI, Albright CD, Rodgers J, Kim J, Zeisel SH, Sivashinskiy MS, Van Dyke TA (2000) Dietary antioxidant depletion: enhancement of tumor apoptosis and inhibition of brain tumor growth in transgenic mice. Carcinogenesis 21:909–914

    Article  CAS  PubMed  Google Scholar 

  19. Archer SY, Hodin RA (1999) Histones acetylation and cancer. Curr Opin Gene Dev 9:171–174

    Article  CAS  Google Scholar 

  20. Klochendler-Yeivin A, Yaniv M (2001) Chromatin modifiers and tumor suppression. Biochim Biophys Acta 1551:M1–M10

    Article  CAS  PubMed  Google Scholar 

  21. Lehrmann H, Pritchard LL, Harel-Bellan A (2002) Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 86:41–65

    Article  CAS  PubMed  Google Scholar 

  22. Fry CJ, Peterson CL (2002) Unlocking the gates to gene expression. Science 295:1847–1848

    Article  CAS  PubMed  Google Scholar 

  23. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  24. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant pattern of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692

    Article  CAS  PubMed  Google Scholar 

  25. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  CAS  PubMed  Google Scholar 

  26. Henderson C, Brancolini C (2003) Apoptotic pathways activated by histone deacetylase inhibitors: implications for the drug-resistant phenotype. Drug Resist Updat 6:247–256

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S, Sugimachi K (2003) Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int J Cancer 103:572–576

    Article  CAS  PubMed  Google Scholar 

  28. Donadelli M, Costanzo C, Faggioli L, Scupoli MT, Moore PS, Bassi C, Scarpa A, Palmieri M (2003) Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol Carcinog 38:59–69

    Article  CAS  PubMed  Google Scholar 

  29. Rosato RR, Grant S (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2:30–37

    PubMed  Google Scholar 

  30. Marks PA, Richon VM, Breslow R, Rifkind RA (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13:477–483

    Article  CAS  PubMed  Google Scholar 

  31. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63:7291–7300

    CAS  PubMed  Google Scholar 

  32. Wroblewski F, La Due J (1995) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    Google Scholar 

  33. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 29,79-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    CAS  PubMed  Google Scholar 

  34. Cousens LS, Gallwitz D, Alberts BM (1979) Different accessibilities in chromatin to histone acetylase. J Biol Chem 254:1716–1723

    CAS  PubMed  Google Scholar 

  35. Del Raso N (1992) In vitro methods for assessing chemical or drug toxicity and metabolism in primary hepatocytes. In: Watson RR (ed) In vitro methods of toxicology. CRC, Boca Raton, pp 176–201

  36. Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J, Frytak S (1979) Failure of high dose vitamin C (ascorbic acid) to benefit patients with advanced cancer: a controlled trial. N Engl J Med 301:687–690

    CAS  PubMed  Google Scholar 

  37. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM (1985) High dose vitamin C versus placebo in the treatment of patients with advanced cancer who had had no prior chemotherapy: a randomized double-blind comparison. N Engl J Med 312:137–141

    CAS  PubMed  Google Scholar 

  38. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  CAS  PubMed  Google Scholar 

  39. He L, Tolentino T, Grayson P, Zhong S, Warrell RP, Rifkind RA, Marks PA, Richon VM, Pandolfi PP (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 108:1321–1330

    Article  CAS  PubMed  Google Scholar 

  40. Lee YS, Jin DQ, Park SH, Han SY, Kim HS, Jeong TC, Huh K, Kim JA (2002) 2,3,7,8-Tetrachlorobenzo-p-dioxin inhibits proliferation of SK-N-SH human neuronal cells through decreased production of reactive oxygen species. Free Radic Res 36:1283–1289

    Article  CAS  PubMed  Google Scholar 

  41. Gorlach A, Kietzmann T, Hess J (2002) Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann N Y Acad Sci 973:505–507

    PubMed  Google Scholar 

  42. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794

    Article  CAS  PubMed  Google Scholar 

  43. Kang J, Zheng R (2004) Dose-dependent regulation of superoxide anion on the proliferation, differentiation, apoptosis and necrosis of human hepatoma cells: the role of intracellular Ca2+. Redox Rep 9:37–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuhong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Chen, J., Zhang, D. et al. Synergistic killing of human leukemia cells by antioxidants and trichostatin A. Cancer Chemother Pharmacol 54, 537–545 (2004). https://doi.org/10.1007/s00280-004-0845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0845-7

Keywords

Navigation