Skip to main content

Advertisement

Log in

Mechanistic and antineoplastic evaluation of taurolidine in the DU145 model of human prostate cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Taurolidine (TRD) was designed in the 1970s as a broad-spectrum antibiotic and is used clinically at high doses without systemic toxicity. We have found that this agent possesses cytotoxic activity in human tumor cell lines and antineoplastic activity in mice bearing i.p. human tumor xenografts. We now report the mechanism by which TRD induces cell death in DU145 human prostate tumor cells. The IC50 (3 days) of TRD in this model was 16.8±1.1 μM. Cytotoxicity was associated with DNA debris and increased membrane phosphatidylserine externalization, both suggesting the induction of apoptosis. This was confirmed by the ability of TRD to induce PARP cleavage in these cells, an effect prevented by coexposure to the pan-caspase inhibitor zVAD-FMK. TRD exposure also resulted in the appearance of cytochrome c in the cytoplasm, procaspase 9 activation within 2 h of drug exposure and procaspase 8 activation 4 h after exposure. Parallel experiments revealed that cytochrome c appearance in the cytoplasm was not blocked by preexposure to zVAD-FMK, while activation of both procaspase 9 and procaspase 8 was prevented. Finally, antineoplastic activity was assessed in mice bearing subcutaneous xenografts of DU145 cells. Initial studies quantitated the toxicity of three i.p. injections of TRD, administered as one injection on three alternate days per week, at doses ranging from 500 to 700 mg/kg per injection. The 500 mg/kg dose produced about 7% mortality after three cycles and effectively inhibited tumor growth. Thus, TRD induced mitochondrial-mediated apoptosis in DU145 human prostate tumor cells and this effect could be exploited for therapeutic advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

IC50 :

The concentration of drug required to inhibit cell growth by 50% compared to nondrug-treated controls

Fas:

CD95/Apo-1

i.p.:

Intraperitoneal

MTD:

Maximally tolerated dose

PARP:

Poly(ADP-ribose) polymerase

PVP:

Kollidine 17PF-S, [polyvinylpyrrolidone]

STS:

Staurosporine

TRD:

Taurolidine, [bis-(1,1-dioxoperhydro-1,2,4-thiadiazinyl-4)methane]

VDAC:

Voltage-dependent anion channel

References

  1. Adams JM, Huang DC, Puthalakath H, Bouillet P, Vairo G, Moriishi K, Hausmann G, O’Reilly L, Newton K, Ogilvy S, Bath ML, Print CG, Harris AW, Strasser A, Cory S (1999) Control of apoptosis in hematopoietic cells by the cl-2 family of proteins. Cold Spring Harb Symp Quant Biol 64:351–358

    CAS  PubMed  Google Scholar 

  2. Atkinson EA, Barry M, Darmon AJ, Shostak I, Turner PC, Moyer RW, Bleackley RC (1998) Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of a direct action of granzyme B. J Biol Chem 273:21261–21266

    Article  CAS  PubMed  Google Scholar 

  3. Bantel H, Engels IH, Voelter W, Schulze-Osthoff K, Wesselborg S (1999) Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis. Cancer Res 59:2083–2090

    CAS  PubMed  Google Scholar 

  4. Blenkharn JI (1987) The antibacterial and antiendotoxin activity of taurolidine in combination with antibiotics. Surg Res Commun 2:149–155

    Google Scholar 

  5. Bossey-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    Article  PubMed  Google Scholar 

  6. Browne MK, Leslie GB, Pfirrmann RW, Brodhuge H (1977) The in vitro and in vivo activity of taurolin against anaerobic pathogenic organisms. Surg Gynecol Obstet 145:842–846

    CAS  PubMed  Google Scholar 

  7. Browne MK, Mackenzie M, Doyle PJ (1978) A controlled trial of taurolin in established bacterial peritonitis. Surg Gynecol Obstet 146:721–724

    CAS  PubMed  Google Scholar 

  8. Brunetti I, Falcone A, Calabresi P, Goulette FA, Darnowski JW (1990) 5-Fluorouracil enhances azidothymidine cytotoxicity: in vitro, in vivo, and biochemical studies. Cancer Res 50:4026–4031

    CAS  PubMed  Google Scholar 

  9. Budijardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    CAS  PubMed  Google Scholar 

  10. Calabresi P, Goulette FA, Darnowski JW (2000) Antineoplastic effects of taurolidine in human tumor cell lines. Proc Am Assoc Cancer Res 41:771

    Google Scholar 

  11. Calabresi P, Goulette FA, Darnowski JW (2001) Taurolidine: cytotoxic and mechanistic evaluation of a novel antineoplastic agent. Cancer Res 61:6816–6821

    CAS  PubMed  Google Scholar 

  12. DaCosta ML, Redmond HP, Bouchier-Hayes DJ (2001) Taurolidine improves survival by abrogating the accelerated development and proliferation of solid tumors and development of organ metastases from circulating tumor cells released following surgery. J Surg Res 101:111–119

    Article  PubMed  Google Scholar 

  13. Darnowski JW, Handschumacher RE (1985) Tissue-specific enhancement of uridine utilization and 5-fluorouracil therapy in mice by benzylacyclouridine. Cancer Res 45:5364–5368

    CAS  PubMed  Google Scholar 

  14. Darnowski JW, Davol PA, Goulette FA (1997) Human recombinant interferon alpha-2a plus 3′-azido-3′-deoxythymidine. Synergistic growth inhibition with evidence of impaired DNA repair in human colon adenocarcinoma cells. Biochem Pharmacol 53:571–580

    Article  CAS  PubMed  Google Scholar 

  15. Darnowski JW, Goulette FA, Wagner EF, Simms E, Calabresi P (2001) Taurolidine: a novel, nontoxic, antineoplastic agent that induces apoptosis in androgen-independent DU145 human prostate tumor cells. Proc Am Assoc Cancer Res 42:212

    Google Scholar 

  16. Davol PA, Goulette FA, Frackelton AR Jr, Darnowski JW (1996) Modulation of p53 expression by human recombinant interferon-a2a correlates with abrogation of cisplatin resistance in a human melanoma cell line. Cancer Res 56:2522–2526

    CAS  PubMed  Google Scholar 

  17. Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786–8803

    Article  CAS  PubMed  Google Scholar 

  18. Erb F, Imbenotte M, Huveene J (1983) Structural investigation of a new organic antimicrobial: taurolidine. Analytical study and application to identification and quantification in biological fluids. Eur J Drug Metabol Pharmacokinet 8:163–173

    CAS  Google Scholar 

  19. Fulda S, Sievens H, Frieson C, Herr I, Debatin KM (1997) The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829

    CAS  PubMed  Google Scholar 

  20. Fulda S, Frriesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin KM (1997) Botulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 57:4956–4965

    CAS  PubMed  Google Scholar 

  21. Gorman SP, McCafferty DF, Woolfson AD, Junes DS (1987) Reduced adherence of microorganisms to human mucosal epithelial cells following treatment with taurolin, a novel antimicrobial agent. J Appl Bacteriol 62:315–320

    CAS  PubMed  Google Scholar 

  22. Green DR, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8:267–271

    CAS  PubMed  Google Scholar 

  23. Han Z, Ribizzi I, Pantazis P, Wyche JH, Darnowski J, Calabresi P (2002) The antibacterial drug taurolidine induces apoptosis by a mitochondrial cytochrome c-dependent mechanism. Anticancer Res 22:1959–1964

    CAS  PubMed  Google Scholar 

  24. Hartfield PJ, Bilney AJ, Murray AW (1998) Neurotrophic factors prevent ceramide-induced apoptosis downstream of c-Jun N-terminal kinase activation in PC12 cells. J Neurochem 71:161–169

    CAS  PubMed  Google Scholar 

  25. Jacobi CA, Ordemann J, Bohm B, Zieren HU, Sabat R, Muller JM (1997) Inhibition of peritoneal tumor cell growth and implantation in laparoscopic surgery in a rat model. Am J Surg 174:359–363

    Article  CAS  PubMed  Google Scholar 

  26. Jacobi CA, Wildbrett P, Volk T, Muller JM (1999) Influence of different gases and intraperitoneal instillation of antiadherent or cytotoxic agents on peritoneal tumor cell growth and implantation with laparoscopic surgery in a rat model. Surg Endosc 13:1021–1025

    Article  CAS  PubMed  Google Scholar 

  27. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR (1998) DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via activation of NF-KB and AP-1. Mol Cell 1:543–551

    CAS  PubMed  Google Scholar 

  28. Knight BI, Skellern GG, Browne MK, Pfirrmann RW (1981) The characterization and quantitation by HPLC (high performance liquid chromatography) of the metabolites of taurolin. Br J Clin Pharmacol 12:439–440

    CAS  PubMed  Google Scholar 

  29. Knight BI, Skellern GG, Smail GA, Browne MK, Pfirrmann RW (1983) NMR studies and GC analysis of the antibacterial agent, taurolidine. J Pharm Sci 72:705–707

    CAS  PubMed  Google Scholar 

  30. Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32:121–124

    Article  CAS  PubMed  Google Scholar 

  31. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    Article  CAS  PubMed  Google Scholar 

  32. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmed M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  33. Magalhaes PJ, Rizzuto R (2001) Mitochondria and calcium homeostasis: a tale of three luminescent proteins. Luminescence 16:67–71

    CAS  PubMed  Google Scholar 

  34. McCartney AC, Browne MK (1988) Clinical studies on administration of taurolin in severe sepsis: a preliminary study. Prog Clin Biol Res 272:361–371

    CAS  PubMed  Google Scholar 

  35. Moser G, Martin MD (1978) Forty cases of peritonitis treated without antibiotics: the intraperitoneal and intravenous use of taurolin. PRAXIS 67:425–428

    CAS  PubMed  Google Scholar 

  36. Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hoffman WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug-induced apoptosis in hepatoma cells is mediated by CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413

    PubMed  Google Scholar 

  37. Newmeyer DD, Ferguson-Miller S (2002) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  Google Scholar 

  38. Petak I, Tillman DM, Harwood FG, Mihalik R, Houghton JA (2000) Fas-dependent and -independent mechanisms of cell death following DNA damage in human colon carcinoma cells. Cancer Res 60:2643–2650

    CAS  PubMed  Google Scholar 

  39. Ribizzi I, Darnowski JW, Goulette FA, Sertoli MR, Calabresi P (2000) Amifostine cytotoxicity and induction of apoptosis in a human myelodysplastic cell line. Leuk Res 24:519–525

    CAS  PubMed  Google Scholar 

  40. Ribizzi I, Han Z, Darnowski JW, Goulette F, Wagner EF, Calabresi P (2001) Taurolidine: mechanism of action of a novel and safe cytotoxic agent for cancer therapy. Proc Am Assoc Cancer Res 42:212

    Google Scholar 

  41. Ribizzi I, Darnowski JW, Goulette FA, Akhtar MS, Chatterjee D, Calabresi P (2002) Taurolidine: preclinical evaluation of a novel, highly selective, agent for bone marrow purging. Bone Marrow Transplant 29:313–319

    Article  CAS  PubMed  Google Scholar 

  42. Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-around players of the calcium game. J Physiol 529:37–47

    CAS  PubMed  Google Scholar 

  43. Shrayer DP, Lukoff H, King T, Calabresi P (2003) The effect of taurolidine on adherent and floating subpopulations of melanoma cells. Anticancer Drugs 14:295–303

    Article  CAS  PubMed  Google Scholar 

  44. Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoonde A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A, Dritschilo A (1998) Irreversible binding of poly (ADP-ribose) polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 58:3496–3498

    Google Scholar 

  45. Wei MC, Zong WX, Cheng EH, Linsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed  Google Scholar 

  46. Wesselborg S, Engels IH, Rossman E, Los M, Schulze-Osthoff K (1999) Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93:3053–3063

    CAS  PubMed  Google Scholar 

  47. Zou H, Li X, Wang X (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Carter-Wallace, Inc., The T. J. Martell Foundation, and Rhode Island Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Darnowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darnowski, J.W., Goulette, F.A., Cousens, L.P. et al. Mechanistic and antineoplastic evaluation of taurolidine in the DU145 model of human prostate cancer. Cancer Chemother Pharmacol 54, 249–258 (2004). https://doi.org/10.1007/s00280-004-0806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0806-1

Keywords

Navigation