Skip to main content

Advertisement

Log in

Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1α

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The cytoprotective mechanism of amifostine (WR-2721) implies free radical scavenging and DNA repair activities. We investigated additional cytoprotective pathways involving intracellular hypoxia and the activation of the hypoxia-inducible factor (HIF) pathway, a key transcription factor regulating glycolysis, angiogenesis and apoptosis, which is also linked with radioresistance.

Materials and methods

The glucose and oxygen levels in the peripheral blood of patients receiving 1000 mg amifostine were determined at various time-points in order to investigate the metabolic changes induced by amifostine. MDA468 breast tumor cell lines were incubated with a high amifostine concentration (10 mM) to overcome the natural resistance of cancer cells to influx of the non-hydrolyzed WR-2721, and the HIF1α protein levels were determined by Western blot analysis. In vivo experiments with Wistar rats were performed in order to assess immunohistochemically changes in the intracellular accumulation of HIF1α induced by amifostine (200 mg/kg).

Results

By 30 min following amifostine administration, the hemoglobin oxygen saturation and pO2 levels had increased in the peripheral blood while glucose levels had reduced, providing evidence that normal tissue metabolism switches to glycolytic pathways. Incubation of cell lines with amifostine resulted in HIF1α induction. In Wistar rats administration of amifostine resulted in increased HIF1α accumulation in normal tissues.

Conclusions

Since it is doubtful whether dephosphorylation of amifostine to the active metabolite WR-1065 occurs within tumoral tissues (an acidic environment that lacks vascular alkaline phosphatase activity), intracellular hypoxia and upregulation of HIF1α represents an additional, normal tissue-specific, amifostine cytoprotective pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3a–c.
Fig. 4a–f.

Similar content being viewed by others

References

  1. Grdina DJ, Sigdestad CP (1989) Radiation protectors: the unexpected benefits. Drug Metab Rev 20:13–42

    CAS  PubMed  Google Scholar 

  2. Holwitt EA, Koda E, Swenberg CE (1990) Enhancement of topoisomerase I-mediated unwinding of supercoiled DNA by the radioprotector WR-33278. Radiat Res 124:107–109

    CAS  PubMed  Google Scholar 

  3. Shen H, Chen ZJ, Zilfou JT, Hopper E, Murphy M, Tew KD (2001) Binding of the aminothiol WR-1065 to transcription factors influences cellular response to anticancer drugs. J Pharmacol Exp Ther 297:1067–1073

    CAS  PubMed  Google Scholar 

  4. Grdina DJ, Murley JS, Kataoka Y, Calvin DP (2002) Differential activation of nuclear transcription factor kappaB, gene expression, and proteins by amifostine’s free thiol in human microvascular endothelial and glioma cells. Semin Radiat Oncol 12 [Suppl 1]:103–111

  5. Purdie JW, Inhaber ER (1983) Interaction of cultured mammalian cells with WR-2721 and its thiol, WR-1065: implications for mechanisms of radioprotection. Int J Radiat Biol 43:517–527

    CAS  Google Scholar 

  6. Glover D, Negendank W, Delivoria-Papadopoulos M, Glick JH (1984) Alterations in oxygen transport following WR-2721. Int J Radiat Oncol Biol Phys 10:1565–1568

    CAS  PubMed  Google Scholar 

  7. Allalunis-Turner MJ, Walden TL Jr, Sawich C (1989) Induction of marrow hypoxia by radioprotective agents. Radiat Res 118:581–586

    CAS  PubMed  Google Scholar 

  8. Koukourakis MI, Giatromanolaki A, Kouroussis C, Kakolyris S, Sivridis E, Frangiadaki C, Retalis G, Georgoulias V (2002) Hypofractionated and accelerated radiotherapy with cytoprotection (HypoARC): a short, safe and effective postoperative regimen for high-risk breast cancer patients. Int J Radiat Oncol Biol Phys 52:144–155

    Article  PubMed  Google Scholar 

  9. Koukourakis MI, Yannakakis D (2001) High dose daily amifostine and hypofractionated intensively accelerated radiotherapy for locally advanced breast cancer. A phase I/II study and report of early and late sequelae. Anticancer Res 21:2973–2978

    CAS  PubMed  Google Scholar 

  10. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    CAS  PubMed  Google Scholar 

  11. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    CAS  PubMed  Google Scholar 

  12. Huang E, Arany Z, Livingston DM, Bunn F (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J Biol Chem 271:32253–32259

    Article  PubMed  Google Scholar 

  13. Ema M, Hirota K, Mimura J, Abe, H, Yodoi J, Sogawa K, Poellinger, Fujii-Kuruyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1a in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    CAS  PubMed  Google Scholar 

  14. Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissue by S-2-3-aminopropylamino-ethylphosphorothioic acid. Cancer Res 40:1519–1524

    CAS  PubMed  Google Scholar 

  15. Okino ST, Chichester CH, Whitlock JP Jr (1998) Hypoxia-inducible mammalian gene expression analyzed in vivo at a TATA-driven promoter and at an initiator-driven promoter. J Biol Chem 273:23837–23843

    Article  CAS  PubMed  Google Scholar 

  16. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276:9519–9525

    Article  CAS  PubMed  Google Scholar 

  17. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    Google Scholar 

  18. Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J, Niizeki H, Kawamura K, Hosokawa M, Asaka M (2001) Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 61:6548–6554

    CAS  PubMed  Google Scholar 

  19. Piret JP, Mottet D, Raes M, Michiels C (2002) CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci 973:443–447

    CAS  PubMed  Google Scholar 

  20. Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinkan H, Hallahan DE (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 6:2413–2419

    Google Scholar 

  21. Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM, Kufe DW, Weichselbaum RR (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    CAS  PubMed  Google Scholar 

  22. Lee HS, Park HJ, Lyons JC, Griffin RJ, Auger EA, Song CW (1997) Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys 38:1079–1087

    Article  CAS  PubMed  Google Scholar 

  23. Park HJ, Lee SH, Chung H, Rhee YH, Lim BU, Ha SW, Griffin RJ, Lee HS, Song CW, Choi EK (2003) Influence of environmental pH on G(2)-phase arrest caused by ionizing radiation. Radiat Res 159:86–93

    CAS  PubMed  Google Scholar 

  24. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353

    CAS  PubMed  Google Scholar 

  25. Koukourakis MI (2002) Amifostine in clinical oncology: current use and future applications. Anticancer Drugs 13:181–209

    Article  CAS  PubMed  Google Scholar 

  26. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1a in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

  27. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia inducible factors HIF-1a and HIF-2a in normal human tissues, cancers and tumor associated macrophages. Am J Pathol 157:411–421

    CAS  PubMed  Google Scholar 

  28. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, Gatter KC, Harris AL (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85:881–890

    CAS  PubMed  Google Scholar 

  29. Vukovic V, Haugland HK, Nicklee T, Morrison AJ, Hedley DW (2001) Hypoxia-inducible factor-1alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res 61:7394–7398

    CAS  PubMed  Google Scholar 

  30. Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, Semenza GL (2001) Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916

    CAS  PubMed  Google Scholar 

  31. Koukourakis MI, Giatromanolaki A, Skarlatos J Corti L, Blandamura S, Piazza M, Gatter KC, Harris AL (2001) Hypoxia inducible factor HIF-1a and HIF-2a expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res 61:1830–1832

    CAS  PubMed  Google Scholar 

  32. Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, Talks K, Gatter KC, Harris AL (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53:1192–1202

    Article  CAS  PubMed  Google Scholar 

  33. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    Article  CAS  PubMed  Google Scholar 

  34. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Koukourakis.

Additional information

This work is presented on behalf of the Tumour and Angiogenesis Research Group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koukourakis, M.I., Giatromanolaki, A., Chong, W. et al. Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1α. Cancer Chemother Pharmacol 53, 8–14 (2004). https://doi.org/10.1007/s00280-003-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0691-z

Keywords

Navigation