Skip to main content
Log in

Predictors of early death, serious hemorrhage, and differentiation syndrome in Japanese patients with acute promyelocytic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Significant advancements have been achieved with regard to the outcomes of acute promyelocytic leukemia (APL) patients through the introduction of all-trans retinoic acid; however, early hemorrhagic death and differentiation syndrome remain the major causes of remission induction failure in patients with APL. To investigate early death, serious hemorrhage, and differentiation syndrome during remission induction therapy in terms of incidence, risk factors, influence on outcomes, and prophylactic effects of several new anticoagulants, the results of 344 patients enrolled in the Acute Promyelocytic Leukemia 204 study conducted by the Japan Adult Leukemia Study Group were analyzed. Early death was observed in 16 patients (4.7%), of whom 14 had serious hemorrhage and 2 had differentiation syndrome. Serious hemorrhage and differentiation syndrome of grade 2 or higher were observed in 21 and 54 patients, respectively. Patients who achieved complete remission had a 7-year disease-free survival of 84.8% if they did not experience serious hemorrhage and 40.0% if they experienced serious hemorrhage during remission induction therapy (P = 0.001). Risk factor analyses showed that higher white blood cell count was associated with early death, higher white blood cell count and lower platelet count with serious hemorrhage, and leukocytosis during induction therapy and higher body surface area with differentiation syndrome. In conclusion, these results indicate that patients with such high-risk features may benefit from more intensive supportive care. The hemorrhagic risk was not relieved by the introduction of new anticoagulants. Further studies are required to establish the predictive impact of body surface area on differentiation syndrome. This trial is registered with UMIN-CTR as C000000154 on September 13, 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Avvisati G, Lo Coco F, Mandelli F (2001) Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol 38:4–12

    Article  CAS  PubMed  Google Scholar 

  2. Grimwade D, Lo Coco F (2002) Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 16:1959–1973. https://doi.org/10.1038/sj.leu.2402721

    Article  CAS  PubMed  Google Scholar 

  3. Tallman MS, Nabhan C, Feusner JH, Rowe JM (2002) Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 99:759–767. https://doi.org/10.1182/blood.v99.3.759

    Article  CAS  PubMed  Google Scholar 

  4. Asou N, Kishimoto Y, Kiyoi H et al (2007) A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARα transcript after consolidation therapy: the Japan adult leukemia study group (JALSG) APL97 study. Blood 110:59–66. https://doi.org/10.1182/blood-2006-08-043992

    Article  CAS  PubMed  Google Scholar 

  5. Sanz MA, Montesinos P, Vellenga E et al (2008) Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: long-term outcome of the LPA 99 multicenter study by the PETHEMA group. Blood 112:3130–3134. https://doi.org/10.1182/blood-2008-05-159632

    Article  CAS  PubMed  Google Scholar 

  6. Adès L, Guerci A, Raffoux E et al (2010) Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the European APL Group experience. Blood 115:1690–1696. https://doi.org/10.1182/blood-2009-07-233387

    Article  CAS  PubMed  Google Scholar 

  7. Avvisati G, Lo-Coco F, Paoloni FP et al (2011) AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood 117:4716–4725. https://doi.org/10.1182/blood-2010-08-302950

    Article  CAS  PubMed  Google Scholar 

  8. Lo-Coco F, Avvisati G, Vignetti M et al (2010) Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: results of the AIDA-2000 trial of the GIMEMA group. Blood 116:3171–3179. https://doi.org/10.1182/blood-2010-03-276196

    Article  CAS  PubMed  Google Scholar 

  9. Powell BL, Moser B, Stock W et al (2010) Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: north American leukemia intergroup study C9710. Blood 116:3751–3757. https://doi.org/10.1182/blood-2010-02-269621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burnett AK, Hills RK, Grimwade D et al (2013) Inclusion of chemotherapy in addition to anthracycline in the treatment of acute promyelocytic leukaemia does not improve outcomes: results of the MRC AML15 trial. Leukemia 27:843–851. https://doi.org/10.1038/leu.2012.360

    Article  CAS  PubMed  Google Scholar 

  11. Adès L, Chevret S, Raffoux E et al (2013) Long-term follow-up of European APL 2000 trial, evaluating the role of cytarabine combined with ATRA and daunorubicin in the treatment of nonelderly APL patients. Am J Hematol 88:556–559. https://doi.org/10.1002/ajh.23451

    Article  CAS  PubMed  Google Scholar 

  12. Burnett AK, Russell NH, Hills RK et al (2015) Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol 16:1295–1305. https://doi.org/10.1016/S1470-2045(15)00193-X

    Article  CAS  PubMed  Google Scholar 

  13. Iland HJ, Collins M, Bradstock K et al (2015) Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and lymphoma group (ALLG) APML4 study: a non-randomised phase 2 trial. Lancet Haematol 2:e357–e366. https://doi.org/10.1016/S2352-3026(15)00115-5

    Article  PubMed  Google Scholar 

  14. Platzbecker U, Avvisati G, Cicconi L et al (2017) Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J Clin Oncol 35:605–612. https://doi.org/10.1200/JCO.2016.67.1982

    Article  CAS  PubMed  Google Scholar 

  15. Adès L, Thomas X, Bresler AG et al (2018) Arsenic trioxide is required in the treatment of newly diagnosed acute promyelocytic leukemia. Analysis of a randomized trial (APL 2006) by the French Belgian Swiss APL group. Haematologica 103:2033–2039. https://doi.org/10.3324/haematol.2018.198614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martínez-Cuadrón D, Montesinos P, Vellenga E et al (2018) Long-term outcome of older patients with newly diagnosed de novo acute promyelocytic leukemia treated with ATRA plus anthracycline-based therapy. Leukemia 32:21–29. https://doi.org/10.1038/leu.2017.178

    Article  CAS  PubMed  Google Scholar 

  17. Mantha S, Tallman MS, Devlin SM, Soff GA (2018) Predictive factors of fatal bleeding in acute promyelocytic leukemia. Thromb Res 164:S98–S102. https://doi.org/10.1016/j.thromres.2018.01.038

    Article  CAS  PubMed  Google Scholar 

  18. Kayser S, Schlenk RF, Platzbecker U (2018) Management of patients with acute promyelocytic leukemia. Leukemia 32:1277–1294. https://doi.org/10.1038/s41375-018-0139-4

    Article  PubMed  Google Scholar 

  19. Sanz MA, Fenaux P, Tallman MS et al (2019) Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood 133:1630–1643. https://doi.org/10.1182/blood-2019-01-894980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stahl M, Tallman MS (2019) Differentiation syndrome in acute promyelocytic leukaemia. Br J Haematol 187:157–162. https://doi.org/10.1111/bjh.16151

    Article  CAS  PubMed  Google Scholar 

  21. Rodeghiero F, Avvisati G, Castaman G, Barbui T, Mandelli F (1990) Early deaths and anti-hemorrhagic treatments in acute promyelocytic leukemia. A GIMEMA retrospective study in 268 consecutive patients. Blood 75:2112–2117

    Article  CAS  PubMed  Google Scholar 

  22. de la Serna J, Montesinos P, Vellenga E et al (2008) Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 111:3395–3402. https://doi.org/10.1182/blood-2007-07-100669

    Article  CAS  PubMed  Google Scholar 

  23. Sanz MA, Montesinos P, Rayon C et al (2010) Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood 115:5137–5146. https://doi.org/10.1182/blood-2010-01-266007

    Article  CAS  PubMed  Google Scholar 

  24. Gillis S, Dann EJ, Eldor A (1995) Low molecular weight heparin in the prophylaxis and treatment of disseminated intravascular coagulation in acute promyelocytic leukemia. Eur J Haematol 54:59–60. https://doi.org/10.1111/j.1600-0609.1995.tb01630.x

    Article  CAS  PubMed  Google Scholar 

  25. Sakuragawa N, Hasegawa H, Maki M, Nakagawa M, Nakashima M (1993) Clinical evaluation of low-molecular-weight heparin (FR-860) on disseminated intravascular coagulation (DIC) — a multicenter co-operative double-blind trial in comparison with heparin. Thromb Res 72:475–500. https://doi.org/10.1016/0049-3848(93)90109-2

    Article  CAS  PubMed  Google Scholar 

  26. Nishiyama T, Matsukawa T, Hanaoka K (2000) Is protease inhibitor a choice for the treatment of pre- or mild disseminated intravascular coagulation? Crit Care Med 28:1419–1422. https://doi.org/10.1097/00003246-200005000-00027

    Article  CAS  PubMed  Google Scholar 

  27. Minakata D, Fujiwara SI, Ikeda T et al (2019) Comparison of gabexate mesilate and nafamostat mesilate for disseminated intravascular coagulation associated with hematological malignancies. Int J Hematol 109:141–146. https://doi.org/10.1007/s12185-018-02567-w

    Article  CAS  PubMed  Google Scholar 

  28. Nieuwenhuis HK, Sixma JJ (1986) Treatment of disseminated intravascular coagulation in acute promyelocytic leukemia with low molecular weight heparinoid Org 10172. Cancer 58:761–764. https://doi.org/10.1002/1097-0142(19860801)58:3 < 761::aid-cncr2820580325 > 3.0.co;2–6

  29. Minakata D, Fujiwara S, Hayakawa J et al (2020) Comparison of danaparoid sodium and synthetic protease inhibitors for the treatment of disseminated intravascular coagulation associated with hematological malignancies: a retrospective analysis. Acta Haematol 143:250–259. https://doi.org/10.1159/000501818

    Article  CAS  PubMed  Google Scholar 

  30. Saito H, Maruyama I, Shimazaki S et al (2007) Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost 5:31–41. https://doi.org/10.1111/j.1538-7836.2006.02267.x

    Article  CAS  PubMed  Google Scholar 

  31. Ikezoe T, Takeuchi A, Isaka M et al (2012) Recombinant human soluble thrombomodulin safely and effectively rescues acute promyelocytic leukemia patients from disseminated intravascular coagulation. Leuk Res 36:1398–1402. https://doi.org/10.1016/j.leukres.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  32. Ookura M, Hosono N, Tasaki T et al (2018) Successful treatment of disseminated intravascular coagulation by recombinant human soluble thrombomodulin in patients with acute myeloid leukemia. Medicine (Baltimore) 97:e12981. https://doi.org/10.1097/MD.0000000000012981

    Article  CAS  Google Scholar 

  33. Shinagawa K, Yanada M, Sakura T et al (2014) Tamibarotene as maintenance therapy for acute promyelocytic leukemia: results from a randomized controlled trial. J Clin Oncol 32:3729–3735. https://doi.org/10.1200/JCO.2013.53.3570

    Article  CAS  PubMed  Google Scholar 

  34. Takeshita A, Asou N, Atsuta Y et al (2019) Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia: a final result of prospective, randomized, JALSG-APL204 study. Leukemia 33:358–370. https://doi.org/10.1038/s41375-018-0233-7

    Article  CAS  PubMed  Google Scholar 

  35. Takeshita A, Asou N, Atsuta Y et al (2020) Impact of CD56 continuously recognizable as prognostic value of acute promyelocytic leukemia: results of multivariate analyses in the Japan adult leukemia study group (JALSG)-APL204 study and a review of the literature. Cancers 12:1444. https://doi.org/10.3390/cancers12061444

    Article  PubMed Central  Google Scholar 

  36. Frankel SR, Eardley A, Heller G et al (1994) All-trans retinoic acid for acute promyelocytic leukemia. Results of the New York study. Ann Intern Med 120:278–286. https://doi.org/10.7326/0003-4819-120-4-199402150-00004

    Article  CAS  PubMed  Google Scholar 

  37. Mantha S, Goldman DA, Devlin SM et al (2017) Determinants of fatal bleeding during induction therapy for acute promyelocytic leukemia in the ATRA era. Blood 129:1763–1767. https://doi.org/10.1182/blood-2016-10-747170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montesinos P, Bergua JM, Vellenga E et al (2009) Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood 113:775–783. https://doi.org/10.1182/blood-2008-07-168617

    Article  CAS  PubMed  Google Scholar 

  39. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  40. Avvisati G, Lo Coco F, Diverio D et al (1996) AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) pilot study. Blood 88:1390–1398

    Article  CAS  PubMed  Google Scholar 

  41. Mandelli F, Diverio D, Avvisati G et al (1997) Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica cooperative groups. Blood 90:1014–1021

    CAS  PubMed  Google Scholar 

  42. Tallman MS, Andersen JW, Schiffer CA et al (1997) All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 337:1021–1028. https://doi.org/10.1056/NEJM199710093371501

    Article  CAS  PubMed  Google Scholar 

  43. Asou N, Adachi K, Tamura J et al (1998) Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan adult leukemia study group. J Clin Oncol 16:78–85. https://doi.org/10.1200/JCO.1998.16.1.78

    Article  CAS  PubMed  Google Scholar 

  44. Park JH, Qiao B, Panageas KS et al (2011) Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 118:1248–1254. https://doi.org/10.1182/blood-2011-04-346437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McClellan JS, Kohrt HE, Coutre S et al (2012) Treatment advances have not improved the early death rate in acute promyelocytic leukemia. Haematologica 97:133–136. https://doi.org/10.3324/haematol.2011.046490

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lou Y, Ma Y, Sun J et al (2017) Effectivity of a modified Sanz risk model for early death prediction in patients with newly diagnosed acute promyelocytic leukemia. Ann Hematol 96:1793–1800. https://doi.org/10.1007/s00277-017-3096-5

    Article  CAS  PubMed  Google Scholar 

  47. Lehmann S, Deneberg S, Antunovic P et al (2017) Early death rates remain high in high-risk APL: update from the Swedish acute leukemia registry 1997-2013. Leukemia 31:1457–1459. https://doi.org/10.1038/leu.2017.71

    Article  CAS  PubMed  Google Scholar 

  48. Nørgaard JM, Friis LS, Kristensen JS et al (2019) Addressing the room for improvement in management of acute promyelocytic leukemia. Eur J Haematol 102:479–485. https://doi.org/10.1111/ejh.13229

    Article  CAS  PubMed  Google Scholar 

  49. Fenaux P, Chastang C, Chevret S et al (1999) A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group Blood 94:1192–1200

    CAS  PubMed  Google Scholar 

  50. Di Bona E, Avvisati G, Castaman G et al (2000) Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol 108:689–695

    Article  PubMed  Google Scholar 

  51. Dally N, Hoffman R, Haddad N, Sarig G, Rowe JM, Brenner B (2005) Predictive factors of bleeding and thrombosis during induction therapy in acute promyelocytic leukemia—a single center experience in 34 patients. Thromb Res 116:109–114. https://doi.org/10.1016/j.thromres.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  52. Yanada M, Matsushita T, Asou N et al (2007) Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol 78:213–219. https://doi.org/10.1111/j.1600-0609.2006.00803.x

    Article  PubMed  Google Scholar 

  53. Kim DY, Lee JH, Kim SD et al (2011) Significance of fibrinogen, D-dimer, and LDH levels in predicting the risk of bleeding in patients with acute promyelocytic leukemia. Leuk Res 35:152–158. https://doi.org/10.1016/j.leukres.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  54. Chang H, Kuo MC, Shih LY et al (2012) Clinical bleeding events and laboratory coagulation profiles in acute promyelocytic leukemia. Eur J Haematol 88:321–328. https://doi.org/10.1111/j.1600-0609.2011.01747.x

    Article  CAS  PubMed  Google Scholar 

  55. Mitrovic M, Suvajdzic N, Bogdanovic A et al (2013) International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation ≥6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia. Med Oncol 30:478. https://doi.org/10.1007/s12032-013-0478-y

    Article  CAS  PubMed  Google Scholar 

  56. Abla O, Ribeiro RC, Testi AM et al (2017) Predictors of thrombohemorrhagic early death in children and adolescents with t(15;17)-positive acute promyelocytic leukemia treated with ATRA and chemotherapy. Ann Hematol 96:1449–1456. https://doi.org/10.1007/s00277-017-3042-6

    Article  PubMed  Google Scholar 

  57. Zhang Y, Hou W, Wang P et al (2018) Development of a risk grading system to identify patients with acute promyelocytic leukemia at high risk of early death. Cancer Manag Res 10:3619–3627. https://doi.org/10.2147/CMAR.S167686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jeddi R, Ghédira H, Mnif S, Gouider E, Fenaux P, Meddeb B (2010) High body mass index is an independent predictor of differentiation syndrome in patients with acute promyelocytic leukemia. Leuk Res 34:545–547. https://doi.org/10.1016/j.leukres.2009.09.017

    Article  PubMed  Google Scholar 

  59. Breccia M, Mazzarella L, Bagnardi V et al (2012) Increased BMI correlates with higher risk of disease relapse and differentiation syndrome in patients with acute promyelocytic leukemia treated with the AIDA protocols. Blood 119:49–54. https://doi.org/10.1182/blood-2011-07-369595

    Article  CAS  PubMed  Google Scholar 

  60. Yoon JH, Kim HJ, Min GJ et al (2019) Progressive hyperleukocytosis is a relevant predictive marker for differentiation syndrome, early death, and subsequent relapse in acute promyelocytic leukemia. Sci Rep 9:11935. https://doi.org/10.1038/s41598-019-47937-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsushita T, Watanabe J, Honda G et al (2014) Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: a retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb Res 133:772–781. https://doi.org/10.1016/j.thromres.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  62. Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121. https://doi.org/10.1056/NEJMoa1300874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Yumi Satou, Yuka Komatsu, Ryoko Fujiyoshi, Shinya Satou, and Shuichi Miyawaki for their contribution on data management; Tomoya Maeda and Maho Ishikawa for data confirmation; Mio Kurata for her support of statistical analysis; and Gareth A. Roberts for English editing the manuscript. We thank all the patients and caregivers, the centers, and participating JALSG members for their support and commitment in this study. We wish to express our sincere gratitude to the late Katsuji Shinagawa for initiating this study as principal investigator.

Funding

The trial was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Health, Labor, and Welfare of Japan (Clinical Cancer Research Grant No. 23–004), the National Cancer Centre Research and Development Fund (Grant No. 23-A-23, 26-A-24), and the Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and Development, AMED (17ck0106251).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.M., H.F., A.T., N.A., M.Y., Y.M., N.U., Y.K., H.K., I.M., and T.N. jointly developed the study design. T.S., Y.U., M.S., N.D., Y.T., R.S., Y.U., A.T., S.T., M.H., and K.F. recruited patients and collected data. S.O. and Y.M. were involved in data acquisition and interpretation. M.I. planned the statistical methods, and Y.A. did the statistical analysis. The first draft of the manuscript was written by H.M. and all authors interpreted the data, drafted and reviewed the report, gave their final approval for publication, and agreed to be accounted for all aspects of the work.

Corresponding author

Correspondence to Hitoshi Minamiguchi.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the trial.

Conflict of interest

Y.A. has received honoraria from Chugai Pharmaceutical Co., Ltd., Mochida Pharmaceutical Co., Ltd., Meiji Seika Pharma Co. Ltd., and Kyowa Hakko Kirin Co., Ltd. N.A. has received honoraria from SRL, Inc. and Nippon-Shinyaku Co., Ltd., and research funds from Chugai Pharmaceutical Co., Ltd. N.D. has received research funds from Fujimoto Pharmaceutical Co. and scholarship endowments from Pfizer Japan Inc. A.T. has received honoraria and research funds from Chugai Pharmaceutical Co., Ltd., and research funds from Kyowa Hakko Kirin Co., Ltd., and Taiho Pharmaceutical Co., Ltd. Y.K. has received honoraria from Astellas Pharma Inc. H.K. has received honoraria from Bristol-Myers Squibb, Astellas Pharma Inc., and Novartis Pharma K.K., and consulting fees from Astellas Pharma Inc., Amgen Astellas BioPharma K.K., and Daiichi Sankyo Co., Ltd., and research funds from Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Zenyaku Kogyo Co., Ltd., FUJIFILM Corporation, Daiichi Sankyo Co., Ltd., Astellas Pharma Inc., Otsuka Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., Eisai Co., Ltd., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd., Novartis Pharma K.K., Sumitomo Dainippon Pharma Co., Ltd., Sanofi K.K., and Celgene Corporation. I.M. has received honoraria from Pfizer Japan Inc., research funds from Chugai Pharmaceutical Co., Ltd., and scholarship endowments from Chugai Pharmaceutical Co., Ltd. and Nippon Shinyaku Co., Ltd. Y.M. has honoraria from Novartis Pharma K.K., Sumitomo Dainippon Pharma Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Otsuka Pharmaceutical Co., Ltd., and Nippon Shinyaku Co., Ltd., and scholarship endowments from Chugai Pharmaceutical Co., Ltd. The other authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minamiguchi, H., Fujita, H., Atsuta, Y. et al. Predictors of early death, serious hemorrhage, and differentiation syndrome in Japanese patients with acute promyelocytic leukemia. Ann Hematol 99, 2787–2800 (2020). https://doi.org/10.1007/s00277-020-04245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04245-6

Keywords

Navigation