Skip to main content

Advertisement

Log in

Ruxolitinib therapy is associated with improved renal function in patients with primary myelofibrosis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Recent evidence suggests that renal dysfunction may be a direct consequence of primary myelofibrosis (PMF). We performed a retrospective analysis of 100 patients with previously untreated PMF, receiving frontline treatment with single agent ruxolitinib, and compared them to 105 patients, receiving frontline treatment with a non-ruxolitinib-based therapy, matched by age, sex, DIPSS plus, and estimated glomerular filtration rate (eGFR). Use of ruxolitinib associated with a significantly higher rate of renal improvement (RI) > 10% (73% vs 50%, p = 0.01) confirmed on multivariate analysis (MVA) [odds ratio 3, 95% confidence interval (CI) 1.6–5.5, p < 0.001]. After a median follow-up of 41 months (range, 1–159 months), median failure-free survival (FFS) was 14 months (range, 1–117 months). Achievement of a RI > 10% maintained its independent association with prolonged FFS on MVA (hazard ratio 1.4, 95% CI 1.1–2, p = 0.02). Ruxolitinib can significantly improve renal function in patients with PMF, significantly impacting failure-free survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baek SW, Moon JY, Ryu H, Choi YS, Song IC, Lee HJ, Yun HJ, Kim S, Jo DY (2018) Chronic kidney disease in the BCR-ABL1-negative myeloproliferative neoplasm: a single-center retrospective study. Korean J Intern Med 33(4):790–797. https://doi.org/10.3904/kjim.2016.263

    Article  PubMed  Google Scholar 

  2. Newberry KJ, Naqvi K, Nguyen KT, Cardenas-Turanzas M, Florencia Tanaka M, Pierce S, Verstovsek S (2014) Comorbidities predict worse prognosis in patients with primary myelofibrosis. Cancer 120(19):2996–3002. https://doi.org/10.1002/cncr.28857

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shimono J, Tsutsumi Y, Ohigashi H (2015) Acute renal tubular damage caused by disseminated Trichosporon infection in primary myelofibrosis. Rinsho Ketsueki 56(1):21–24. https://doi.org/10.11406/rinketsu.56.21

    Article  PubMed  Google Scholar 

  4. Sile S, Wall BM (2001) Acute renal failure secondary to spontaneous acute tumor lysis syndrome in myelofibrosis. Am J Kidney Dis 38(4):E21

    Article  CAS  PubMed  Google Scholar 

  5. Tuite MJ, Weiss SL (1991) Ultrasound and computed tomographic appearance of extramedullary hematopoiesis encasing the renal pelvis. J Clin Ultrasound 19(4):238–240

    Article  CAS  PubMed  Google Scholar 

  6. Oesterling JE, Keating JP, Leroy AJ, Earle JD, Farrow GM, McCarthy JT, Silverstein MN (1992) Idiopathic myelofibrosis with myeloid metaplasia involving the renal pelves, ureters and bladder. J Urol 147(5):1360–1362

    Article  CAS  PubMed  Google Scholar 

  7. Gryspeerdt S, Oyen R, Van Hoe L, Baert AL, Boogaerts M (1995) Extramedullary hematopoiesis encasing the pelvicalyceal system: CT findings. Ann Hematol 71(1):53–56

    Article  CAS  PubMed  Google Scholar 

  8. La Fianza A, Torretta L, Spinazzola A (2005) Extramedullary hematopoiesis in chronic myelofibrosis encasing the pelvicaliceal system and perirenal spaces: CT findings. Urol Int 75(3):281–284. https://doi.org/10.1159/000087809

    Article  PubMed  Google Scholar 

  9. Cvetkovic ZP, Cvetkovic BR, Celeketic D, Milenkovic D, Perunicic-Pekovic G (2010) Bilateral ureteral obstruction due to primary myelofibrosis caused hyperuricaemia. Acta Chir Iugosl 57(2):79–83

    Article  CAS  PubMed  Google Scholar 

  10. Ganguli A, Chalokia RS, Kaur BJ (2016) Obstructive Uropathy as an initial presentation of primary myelofibrosis: case report and review of literature. Indian J Hematol Blood Transfus 32(Suppl 1):117–120. https://doi.org/10.1007/s12288-016-0679-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Imai K, Aoi T, Kitai H, Endo N, Fujino M, Ichida S (2017) A case of perirenal extramedullary hematopoiesis in a patient with primary myelofibrosis. CEN Case Rep 6(2):194–199. https://doi.org/10.1007/s13730-017-0274-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Panda A, Chandrashekhara SH, Nambirajan A, Mishra P (2016, 2016) Idiopathic myelofibrosis with disseminated hepatosplenic, mesenteric, renal and pulmonary extramedullary haematopoeisis, portal hypertension and tuberculosis: initial presentation and 2 years follow-up. BMJ Case Rep. https://doi.org/10.1136/bcr-2016-217854

  13. Chen G, Ali R, Shuldberg MM, Bastani B, Brink DS (2013) Extramedullary hematopoiesis in renal allograft. Clin Kidney J 6(5):491–494. https://doi.org/10.1093/ckj/sft101

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sukov WR, Remstein ED, Nascimento AG, Sethi S, Lewin M (2009) Sclerosing extramedullary hematopoietic tumor: emphasis on diagnosis by renal biopsy. Ann Diagn Pathol 13(2):127–131. https://doi.org/10.1016/j.anndiagpath.2007.12.003

    Article  PubMed  Google Scholar 

  15. Semple D, Kingdon E, Holt S (2004) Dialysis independence following radiotherapy of renal extramedullary haemopoeisis. Nephrol Dial Transplant 19(5):1310–1312. https://doi.org/10.1093/ndt/gfh049

    Article  PubMed  Google Scholar 

  16. Remstein ED, Kurtin PJ, Nascimento AG (2000) Sclerosing extramedullary hematopoietic tumor in chronic myeloproliferative disorders. Am J Surg Pathol 24(1):51–55

    Article  CAS  PubMed  Google Scholar 

  17. Schnuelle P, Waldherr R, Lehmann KJ, Woenckhaus J, Back W, Niemir Z, van der Woude FJ (1999) Idiopathic myelofibrosis with extramedullary hematopoiesis in the kidneys. Clin Nephrol 52(4):256–262

    CAS  PubMed  Google Scholar 

  18. Xiao JC, Walz-Mattmuller R, Ruck P, Horny HP, Kaiserling E (1997) Renal involvement in myeloproliferative and lymphoproliferative disorders. A study of autopsy cases. Gen Diagn Pathol 142(3–4):147–153

    CAS  PubMed  Google Scholar 

  19. Holt SG, Field P, Carmichael P, Mehta A, Jarmulowicz M, Clarke D, Hilson A, Burns A (1995) Extramedullary haematopoeisis in the renal parenchyma as a cause of acute renal failure in myelofibrosis. Nephrol Dial Transplant 10(8):1438–1440

    CAS  PubMed  Google Scholar 

  20. Said SM, Leung N, Sethi S, Cornell LD, Fidler ME, Grande JP, Herrmann S, Tefferi A, D'Agati VD, Nasr SH (2011) Myeloproliferative neoplasms cause glomerulopathy. Kidney Int 80(7):753–759. https://doi.org/10.1038/ki.2011.147

    Article  PubMed  Google Scholar 

  21. Alexander MP, Nasr SH, Kurtin PJ, Casey ET, Hernandez LP, Fidler ME, Sethi S, Cornell LD (2015) Renal extramedullary hematopoiesis: interstitial and glomerular pathology. Mod Pathol 28(12):1574–1583. https://doi.org/10.1038/modpathol.2015.117

    Article  CAS  PubMed  Google Scholar 

  22. Strati P, Glass WF, Abdelrahim M, Selamet U, Tchakarov A, Workeneh BT, Verstovsek S, Abudayyeh A (2018) Renal complications of primary myelofibrosis. Leuk Lymphoma 60:1–4. https://doi.org/10.1080/10428194.2018.1474525

    Article  Google Scholar 

  23. Rajasekaran A, Ngo TT, Abdelrahim M, Glass W, Podoll A, Verstovsek S, Abudayyeh A (2015) Primary myelofibrosis associated glomerulopathy: significant improvement after therapy with ruxolitinib. BMC Nephrol 16:121. https://doi.org/10.1186/s12882-015-0121-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Sordo R, Brugnano R, Covarelli C, Fiorucci G, Falzetti F, Barbatelli G, Nunzi E, Sidoni A (2017) Nephrotic syndrome in primary myelofibrosis with renal extramedullary hematopoiesis and glomerulopathy in the JAK inhibitor era. Clin Nephrol Case Stud 5:70–77. https://doi.org/10.5414/CNCS109100

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951. https://doi.org/10.1182/blood-2009-03-209262

    Article  CAS  PubMed  Google Scholar 

  26. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, Van Dyke D, Hanson C, Wu W, Pardanani A, Cervantes F, Passamonti F, Tefferi A (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29(4):392–397. https://doi.org/10.1200/JCO.2010.32.2446

    Article  PubMed  Google Scholar 

  27. Chen X, Shi JG, Emm T, Scherle PA, McGee RF, Lo Y, Landman RR, Punwani NG, Williams WV, Yeleswaram S (2014) Pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in renal and hepatic impairment patients. Clin Pharmacol Drug Dev 3(1):34–42. https://doi.org/10.1002/cpdd.77

    Article  CAS  PubMed  Google Scholar 

  28. Martyre MC, Magdelenat H, Bryckaert MC, Laine-Bidron C, Calvo F (1991) Increased intraplatelet levels of platelet-derived growth factor and transforming growth factor-beta in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 77(1):80–86

    Article  CAS  PubMed  Google Scholar 

  29. Martyre MC (1995) TGF-beta and megakaryocytes in the pathogenesis of myelofibrosis in myeloproliferative disorders. Leuk Lymphoma 20(1–2):39–44. https://doi.org/10.3109/10428199509054751

    Article  CAS  PubMed  Google Scholar 

  30. Iida H, Seifert R, Alpers CE, Gronwald RG, Phillips PE, Pritzl P, Gordon K, Gown AM, Ross R, Bowen-Pope DF et al (1991) Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci U S A 88(15):6560–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang T, Che Q, Lin Y, Li H, Zhang N (2006) Aldose reductase regulates TGF-beta1-induced production of fibronectin and type IV collagen in cultured rat mesangial cells. Nephrology (Carlton) 11(2):105–112. https://doi.org/10.1111/j.1440-1797.2006.00553.x

    Article  CAS  Google Scholar 

  32. Kontzias A, Laurence A, Gadina M, O'Shea JJ (2012) Kinase inhibitors in the treatment of immune-mediated disease. F1000 Med Rep 4:5. https://doi.org/10.3410/M4-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, Spoerl S, Ditschkowski M, Ecsedi M, Sockel K, Ayuk F, Ajib S, de Fontbrune FS, Na IK, Penter L, Holtick U, Wolf D, Schuler E, Meyer E, Apostolova P, Bertz H, Marks R, Lubbert M, Wasch R, Scheid C, Stolzel F, Ordemann R, Bug G, Kobbe G, Negrin R, Brune M, Spyridonidis A, Schmitt-Graff A, van der Velden W, Huls G, Mielke S, Grigoleit GU, Kuball J, Flynn R, Ihorst G, Du J, Blazar BR, Arnold R, Kroger N, Passweg J, Halter J, Socie G, Beelen D, Peschel C, Neubauer A, Finke J, Duyster J, von Bubnoff N (2015) Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 29(10):2062–2068. https://doi.org/10.1038/leu.2015.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tefferi A, Pardanani A (2011) Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 86(12):1188–1191. https://doi.org/10.4065/mcp.2011.0518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yilmaz M, Lahoti A, O'Brien S, Nogueras-Gonzalez GM, Burger J, Ferrajoli A, Borthakur G, Ravandi F, Pierce S, Jabbour E, Kantarjian H, Cortes JE (2015) Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer 121(21):3894–3904. https://doi.org/10.1002/cncr.29587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molica M, Scalzulli E, Colafigli G, Fegatelli DA, Massaro F, Latagliata R, Foa R, Breccia M (2018) Changes in estimated glomerular filtration rate in chronic myeloid leukemia patients treated front line with available TKIs and correlation with cardiovascular events. Ann Hematol 97(10):1803–1808. https://doi.org/10.1007/s00277-018-3375-9

    Article  CAS  PubMed  Google Scholar 

  37. Savin VJ, Sharma M, Zhou J, Genochi D, Sharma R, Srivastava T, Ilahe A, Budhiraja P, Gupta A, McCarthy ET (2017) Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed Res Int 2017:6232616. https://doi.org/10.1155/2017/6232616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strati P, Chaffee KG, Achenbach SJ, Slager SL, Leung N, Call TG, Ding W, Parikh SA, Kay NE, Shanafelt TD (2017) Renal insufficiency is an independent prognostic factor in patients with chronic lymphocytic leukemia. Haematologica 102(1):e22–e25. https://doi.org/10.3324/haematol.2016.150706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonsalves WI, Leung N, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Dingli D, Kapoor P, Go RS, Lin Y, Russell SJ, Lust JA, Zeldenrust S, Kyle RA, Gertz MA, Kumar SK (2015) Improvement in renal function and its impact on survival in patients with newly diagnosed multiple myeloma. Blood Cancer J 5:e296. https://doi.org/10.1038/bcj.2015.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fermand JP, Bridoux F, Kyle RA, Kastritis E, Weiss BM, Cook MA, Drayson MT, Dispenzieri A, Leung N, International K, Monoclonal Gammopathy Research G (2013) How I treat monoclonal gammopathy of renal significance (MGRS). Blood 122 (22):3583–3590. doi:https://doi.org/10.1182/blood-2013-05-495929, 2013

  41. Strati P, Nasr SH, Leung N, Hanson CA, Chaffee KG, Schwager SM, Achenbach SJ, Call TG, Parikh SA, Ding W, Kay NE, Shanafelt TD (2015) Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience. Haematologica 100(9):1180–1188. https://doi.org/10.3324/haematol.2015.128793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PS designed the study, analyzed data, and wrote the paper; SV provided clinical care to patients and coauthored the paper; MA and US provided clinical care to patients and coauthored the paper; VDP and SAP collected clinical data and coauthored the paper; AA designed the study, analyzed the data, provided clinical care to patients, and wrote the paper.

Corresponding authors

Correspondence to Srdan Verstovsek or Ala Abudayyeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strati, P., Abdelrahim, M., Selamet, U. et al. Ruxolitinib therapy is associated with improved renal function in patients with primary myelofibrosis. Ann Hematol 98, 1611–1616 (2019). https://doi.org/10.1007/s00277-019-03708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-019-03708-9

Keywords

Navigation