Skip to main content

Advertisement

Log in

Circulating tumor DNA: clinical roles in diffuse large B cell lymphoma

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Diffuse large B cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma (NHL), is a clinically and molecularly heterogeneous malignant lymphoproliferative disease. In the era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic option, and monitoring disease relapse. However, lacking a circulating disease with most DLBCL cases hampers the acquisition of tumor genomic landscapes and disease dynamics. Circulating tumor DNA (ctDNA) is a novel noninvasive, real-time, and tumor-specific biomarker, reliably reflecting the comprehensive tumor genetic profiles, thus holds great promise in individualized medicine, including precise diagnosis and prognosis, response monitoring, and relapse detection of DLBCL. Here, we reviewed the recent advances of ctDNA in DLBCL and discussed its clinical values at different time points during the disease courses by comparing with the current routine methods in clinical practice. Collectively, we anticipated that ctDNA will ultimately be integrated into the management of DLBCL to facilitate precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Abbreviations

AF:

allele frequency

CAPP-Seq:

cancer personalized profiling by deep sequencing

cfDNA:

cell-free DNA

CLL:

chronic lymphocytic leukemia

CMR:

complete molecular remission

COO:

cell of origin

CR:

complete response

CSF:

cerebrospinal fluid

ctDNA:

circulating tumor DNA

DLBCL:

diffuse large B cell lymphoma

dPCR:

digital polymerase chain reaction

EMA:

European Medicines Agency

GEP:

gene expression profiling

FL:

follicular lymphoma

HL:

Hodgkin lymphoma

HSCT:

allogeneic stem cell transplantation

HTS:

high-throughput sequencing

Ig:

immunoglobulin

IgCap:

capturing and sequencing the IgH gene

IgH:

immunoglobulin heavy chain

IPI:

International Prognostic Index

LDH:

serum lactate dehydrogenase

MCL:

mantle cell lymphoma

MRD:

minimal residual disease

MTV:

metabolic tumor volume

MYD88:

myeloid differentiation primary response gene

NCI:

National Cancer Institute

NCCN:

National Comprehensive Cancer Network

NGS:

next-generation sequencing

NHL:

non-Hodgkin lymphoma

NPV:

negative predictive value

NSCLC:

non-small-cell lung cancer

OS:

overall survival

PCNSL:

primary central nerve system lymphoma

PCR:

polymerase chain reaction

PET/CT:

18-fluoro-deoxyglucose positron emission tomography combined with CT

PFS:

progression-free survival

PPV:

positive predictive value

REAL:

the Revised European American Classification

rrDLBCL:

refractory/relapse DLBCL

RS:

Richter’s syndrome

SINE:

selective inhibitors of nuclear export

SUV:

single nucleotide variant

tFL:

transforming follicular lymphoma

WES:

whole exome sequencing

WHO:

the World Health Organization

XPO1:

exportin-1

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Sehn LH, Gascoyne RD (2015) Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood 125(1):22–32. https://doi.org/10.1182/blood-2014-05-577189

    Article  CAS  PubMed  Google Scholar 

  3. Larouche JF, Berger F, Chassagne-Clement C et al (2010) Lymphoma recurrence 5 years or later following diffuse large B-cell lymphoma: clinical characteristics and outcome. J Clin Oncol 28(12):2094–2100. https://doi.org/10.1200/JCO.2009.24.5860

    Article  PubMed  Google Scholar 

  4. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238. https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  5. Kristensen LS, Hansen JW, Kristensen SS, Tholstrup D, Harslof LB, Pedersen OB, De Nully Brown P, Gronbaek K (2016) Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma. Clin Epigenetics 8(1):95. https://doi.org/10.1186/s13148-016-0261-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bohers E, Viailly PJ, Dubois S et al (2015) Somatic mutations of cell-free circulating DNA detected by next-generation sequencing reflect the genetic changes in both germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphomas at the time of diagnosis. Haematologica 100(7):e280–e284. https://doi.org/10.3324/haematol.2015.123612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ladetto M, Buske C, Hutchings M et al (2017) ESMO consensus conference on malignant lymphoma: general perspectives and recommendations for prognostic tools in mature B-cell lymphomas and chronic lymphocytic leukaemia. Ann Oncol 27(12):2149–2160. https://doi.org/10.1093/annonc/mdx061

    Article  Google Scholar 

  8. Safar V, Dupuis J, Itti E et al (2012) Interim [18F]fluorodeoxyglucose positron emission tomography scan in diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy plus rituximab. J Clin Oncol 30(2):184–190. https://doi.org/10.1200/JCO.2011.38.2648

    Article  CAS  PubMed  Google Scholar 

  9. Zinzani PL, Broccoli A, Gioia DM et al (2016) Interim positron emission tomography response-adapted therapy in advanced-stage Hodgkin lymphoma: final results of the phase II part of the HD0801 study. J Clin Oncol 34(12):1376–1385. https://doi.org/10.1200/JCO.2015.63.0699

    Article  CAS  PubMed  Google Scholar 

  10. Johnson P, Federico M, Kirkwood A et al (2016) Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med 374(25):2419–2429. https://doi.org/10.1056/NEJMoa1510093

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moskowitz CH, Schoder H, Teruya-Feldstein J et al (2010) Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol 28(11):1896–1903. https://doi.org/10.1200/JCO.2009.26.5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abel GA (2015) Does surveillance imaging after treatment for diffuse large B-cell lymphoma really work? J Clin Oncol 33(13):1427–1429. https://doi.org/10.1200/JCO.2014.60.1120

    Article  PubMed  Google Scholar 

  13. Phillips T, Mercer J (2017) Surveillance scans in lymphoma: friend or foe? Curr Treat Options in Oncol 18(2):10. https://doi.org/10.1007/s11864-017-0451-7

    Article  Google Scholar 

  14. Pitini V, Arrigo C, Di Mirto C, Garufi L, Mondello P, d’Aquino A, Altavilla G (2015) Should the use of surveillance imaging in diffuse large B-cell lymphoma be discontinued? J Clin Oncol 33(14):1623. https://doi.org/10.1200/JCO.2014.60.0627

    Article  PubMed  Google Scholar 

  15. Mamot C, Klingbiel D, Hitz F et al (2015) Final results of a prospective evaluation of the predictive value of interim positron emission tomography in patients with diffuse large B-cell lymphoma treated with R-CHOP-14 (SAKK 38/07). J Clin Oncol 33(23):2523–2529. https://doi.org/10.1200/JCO.2014.58.9846

    Article  CAS  PubMed  Google Scholar 

  16. El-Galaly TC, Jakobsen LH, Hutchings M et al (2015) Routine imaging for diffuse large B-cell lymphoma in first complete remission does not improve post-treatment survival: a Danish-Swedish population-based study. J Clin Oncol 33(34):3993–3998. https://doi.org/10.1200/JCO.2015.62.0229

    Article  CAS  PubMed  Google Scholar 

  17. Wilson WH, Young RM, Schmitz R et al (2015) Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med 21(8):922–926. https://doi.org/10.1038/nm.3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davids MS, Roberts AW, Seymour JF et al (2017) Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol 35(8):826–833. https://doi.org/10.1200/JCO.2016.70.4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roschewski M, Staudt LM, Wilson WH (2014) Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol 11(1):12–23. https://doi.org/10.1038/nrclinonc.2013.197

    Article  CAS  PubMed  Google Scholar 

  20. Assouline SE, Nielsen TH, Yu S et al (2016) Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood 128(2):185–194. https://doi.org/10.1182/blood-2016-02-699520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ennishi D, Mottok A, Ben-Neriah S et al (2017) Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell of origin-specific clinical impact. Blood. https://doi.org/10.1182/blood-2016-11-747022

  22. Chapuy B, Cheng H, Watahiki A et al (2016) Diffuse large B-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood 127(18):2203–2213. https://doi.org/10.1182/blood-2015-09-672352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morin RD, Assouline S, Alcaide M et al (2016) Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin Cancer Res 22(9):2290–2300. https://doi.org/10.1158/1078-0432.CCR-15-2123

    Article  CAS  PubMed  Google Scholar 

  24. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1–2):57–68. https://doi.org/10.1016/j.cell.2015.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Camus V, Jardin F, Tilly H (2017) The value of liquid biopsy in diagnosis and monitoring of diffuse large b-cell lymphoma: recent developments and future potential. Expert Rev Mol Diagn 17(6):557–566. https://doi.org/10.1080/14737159.2017.1319765

    Article  CAS  PubMed  Google Scholar 

  26. Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  27. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  28. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46(5):318–322

    Article  CAS  PubMed  Google Scholar 

  29. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL (1994) Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomark Prev 3(1):67–71

    CAS  Google Scholar 

  30. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373. https://doi.org/10.1073/pnas.0507904102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990. https://doi.org/10.1038/nm.1789

    Article  CAS  PubMed  Google Scholar 

  32. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra168. https://doi.org/10.1126/scitranslmed.3003726

    Article  CAS  Google Scholar 

  33. Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554. https://doi.org/10.1038/nm.3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frickhofen N, Muller E, Sandherr M, Binder T, Bangerter M, Wiest C, Enz M, Heimpel H (1997) Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood 90(12):4953–4960

    CAS  PubMed  Google Scholar 

  35. Deligezer U, Yaman F, Erten N, Dalay N (2003) Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta 335(1–2):89–94. https://doi.org/10.1016/s0009-8981(03)00279-1

    Article  CAS  PubMed  Google Scholar 

  36. Shi H, Guo J, Duff DJ et al (2007) Discovery of novel epigenetic markers in non-Hodgkin’s lymphoma. Carcinogenesis 28(1):60–70. https://doi.org/10.1093/carcin/bgl092

    Article  CAS  PubMed  Google Scholar 

  37. He J, Wu J, Jiao Y, Wagner-Johnston N, Ambinder RF, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2011) IgH gene rearrangements as plasma biomarkers in Non- Hodgkin’s lymphoma patients. Oncotarget 2(3):178–185. https://doi.org/10.18632/oncotarget.235

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roschewski M, Dunleavy K, Pittaluga S et al (2015) Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol 16(5):541–549. https://doi.org/10.1016/s1470-2045(15)70106-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Scherer F, Kurtz DM, Newman AM et al (2016) Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med 8(364):364ra155. https://doi.org/10.1126/scitranslmed.aai8545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurtz DM, Green MR, Bratman SV et al (2015) Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood 125(24):3679–3687. https://doi.org/10.1182/blood-2015-03-635169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeh P, Hunter T, Sinha D et al (2017) Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun 8:14756. https://doi.org/10.1038/ncomms14756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarkozy C, Huet S, Carlton VE et al (2017) The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget 8(5):8765–8774. https://doi.org/10.18632/oncotarget.14448

    Article  PubMed  PubMed Central  Google Scholar 

  43. Camus V, Sarafan-Vasseur N, Bohers E et al (2016) Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma 57(9):2171–2179. https://doi.org/10.3109/10428194.2016.1139703

    Article  CAS  PubMed  Google Scholar 

  44. Camus V, Stamatoullas A, Mareschal S et al (2016) Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica 101(9):1094–1101. https://doi.org/10.3324/haematol.2016.145102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alcaide M, Yu S, Bushell K et al (2016) Multiplex droplet digital PCR quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma. Clin Chem 62(9):1238–1247. https://doi.org/10.1373/clinchem.2016.255315

    Article  CAS  PubMed  Google Scholar 

  46. Wedge E, Hansen JW, Garde C et al (2017) Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol. https://doi.org/10.1002/ajh.24751

  47. Sun K, Jiang P, Chan KC et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112(40):E5503–E5512. https://doi.org/10.1073/pnas.1508736112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chabon JJ, Simmons AD, Lovejoy AF et al (2016) Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 7:11815. https://doi.org/10.1038/ncomms11815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Mattos-Arruda L, Mayor R, Ng CK et al (2015) Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 6:8839. https://doi.org/10.1038/ncomms9839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Springer S, Zhang M et al (2015) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 112(31):9704–9709. https://doi.org/10.1073/pnas.1511694112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sriram KB, Relan V, Clarke BE et al (2012) Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas. BMC Cancer 12(1). https://doi.org/10.1186/1471-2407-12-428

  52. Birkenkamp-Demtroder K, Nordentoft I, Christensen E et al (2016) Genomic alterations in liquid biopsies from patients with bladder cancer. Eur Urol 70(1):75–82. https://doi.org/10.1016/j.eururo.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  53. Jiang P, Chan CW, Chan KC et al (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 112(11):E1317–E1325. https://doi.org/10.1073/pnas.1500076112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Underhill HR, Kitzman JO, Hellwig S et al (2016) Fragment length of circulating tumor DNA. PLoS Genet 12(7):e1006162. https://doi.org/10.1371/journal.pgen.1006162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665

    CAS  PubMed  Google Scholar 

  56. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta 1775(1):181–232. https://doi.org/10.1016/j.bbcan.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  57. Sunami E, Vu AT, Nguyen SL, Giuliano AE, Hoon DS (2008) Quantification of LINE1 in circulating DNA as a molecular biomarker of breast cancer. Ann N Y Acad Sci 1137:171–174. https://doi.org/10.1196/annals.1448.011

    Article  CAS  PubMed  Google Scholar 

  58. De Vlaminck I, Martin L, Kertesz M et al (2015) Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci U S A 112(43):13336–13341. https://doi.org/10.1073/pnas.1517494112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rossi D, Diop F, Spaccarotella E et al (2017) Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood 129(14):1947–1957. https://doi.org/10.1182/blood-2016-05-719641

    Article  CAS  PubMed  Google Scholar 

  60. Armand P, Oki Y, Neuberg DS et al (2013) Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma. Br J Haematol 163(1):123–126. https://doi.org/10.1111/bjh.12439

    Article  CAS  PubMed  Google Scholar 

  61. Herrera AF, Kim HT, Kong KA et al (2016) Next-generation sequencing-based detection of circulating tumour DNA after allogeneic stem cell transplantation for lymphoma. Br J Haematol 175(5):841–850. https://doi.org/10.1111/bjh.14311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hohaus S, Giachelia M, Massini G et al (2009) Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann Oncol 20(8):1408–1413. https://doi.org/10.1093/annonc/mdp006

    Article  CAS  PubMed  Google Scholar 

  63. Barault L, Amatu A, Bleeker FE et al (2015) Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann Oncol 26(9):1994–1999. https://doi.org/10.1093/annonc/mdv272

    Article  CAS  PubMed  Google Scholar 

  64. Bedin C, Enzo MV, Del Bianco P, Pucciarelli S, Nitti D, Agostini M (2017) Diagnostic and prognostic role of cell-free DNA testing for colorectal cancer patients. Int J Cancer 140(8):1888–1898. https://doi.org/10.1002/ijc.30565

    Article  CAS  PubMed  Google Scholar 

  65. Chi KR (2016) The tumour trail left in blood. Nature 532(7598):269–271. https://doi.org/10.1038/532269a

    Article  CAS  PubMed  Google Scholar 

  66. Yuan C, Clish CB, Wu C et al (2016) Circulating metabolites and survival among patients with pancreatic cancer. J Natl Cancer Inst 108(6):djv409. https://doi.org/10.1093/jnci/djv409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perdigones N, Murtaza M (2017) Capturing tumor heterogeneity and clonal evolution in solid cancers using circulating tumor DNA analysis. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2017.02.003

  68. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112. https://doi.org/10.1038/nature12065

    Article  CAS  PubMed  Google Scholar 

  69. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra224. https://doi.org/10.1126/scitranslmed.3007094

    Article  CAS  Google Scholar 

  70. Gormally E, Vineis P, Matullo G et al (2006) TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res 66(13):6871–6876. https://doi.org/10.1158/0008-5472.CAN-05-4556

    Article  CAS  PubMed  Google Scholar 

  71. McMullen JRW, Selleck M, Wall NR, Senthil M (2017) Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget. https://doi.org/10.18632/oncotarget.16480

  72. Vidal J, Muinelo L, Dalmases A et al (2017) Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol. https://doi.org/10.1093/annonc/mdx125

  73. Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K (2017) Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet 49(4):635–642. https://doi.org/10.1038/ng.3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Christie EL, Fereday S, Doig K, Pattnaik S, Dawson SJ, Bowtell DDL (2017) Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. J Clin Oncol 35(12):1274–1280. https://doi.org/10.1200/JCO.2016.70.4627

    Article  CAS  PubMed  Google Scholar 

  75. Camus V, Miloudi H, Taly A, Sola B, Jardin F (2017) XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol 10(1):47. https://doi.org/10.1186/s13045-017-0412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dubois S, Mareschal S, Picquenot JM et al (2015) Immunohistochemical and genomic profiles of diffuse large B-cell lymphomas: implications for targeted EZH2 inhibitor therapy? Oncotarget 6(18):16712–16724. https://doi.org/10.18632/oncotarget.3154

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sorensen BS, Wu L, Wei W, Tsai J, Weber B, Nexo E, Meldgaard P (2014) Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer 120(24):3896–3901. https://doi.org/10.1002/cncr.28964

    Article  CAS  PubMed  Google Scholar 

  78. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20(6):1698–1705. https://doi.org/10.1158/1078-0432.CCR-13-2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morelli MP, Overman MJ, Dasari A et al (2015) Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 26(4):731–736. https://doi.org/10.1093/annonc/mdv005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kridel R, Sehn LH, Gascoyne RD (2017) Can histologic transformation of follicular lymphoma be predicted and prevented? Blood. https://doi.org/10.1182/blood-2017-03-691345

  81. Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32(27):3059–3068. https://doi.org/10.1200/JCO.2013.54.8800

    Article  PubMed  PubMed Central  Google Scholar 

  82. Adams HJ, Nievelstein RA, Kwee TC (2015) Prognostic value of complete remission status at end-of-treatment FDG-PET in R-CHOP-treated diffuse large B-cell lymphoma: systematic review and meta-analysis. Br J Haematol 170(2):185–191. https://doi.org/10.1111/bjh.13420

    Article  CAS  PubMed  Google Scholar 

  83. Kwok M, Wu SP, Mo C, Summers T, Roschewski M (2016) Circulating tumor DNA to monitor therapy for aggressive B-cell lymphomas. Curr Treat Options in Oncol 17(9):47. https://doi.org/10.1007/s11864-016-0425-1

    Article  Google Scholar 

  84. Luminari S, Galimberti S, Versari A et al (2016) Positron emission tomography response and minimal residual disease impact on progression-free survival in patients with follicular lymphoma. A subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi. Haematologica 101(2):e66–e68. https://doi.org/10.3324/haematol.2015.132811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheminant M, Derrieux C, Touzart A et al (2016) Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica 101(3):336–345. https://doi.org/10.3324/haematol.2015.134957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thompson PA, Wierda WG (2016) Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood 127(3):279–286. https://doi.org/10.1182/blood-2015-08-634816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia-Murillas I, Schiavon G, Weigelt B et al (2015) Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 7(302):302ra133. https://doi.org/10.1126/scitranslmed.aab0021

    Article  PubMed  Google Scholar 

  88. Tie J, Wang Y, Tomasetti C et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8(346):346ra392. https://doi.org/10.1126/scitranslmed.aaf6219

    Article  CAS  Google Scholar 

  89. Cohen JB, Behera M, Thompson CA, Flowers CR (2017) Evaluating surveillance imaging for diffuse large B-cell lymphoma and Hodgkin lymphoma. Blood 129(5):561–564. https://doi.org/10.1182/blood-2016-08-685073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Armitage JO, Vose JM (2015) To surveil or not to surveil. J Clin Oncol 33(34):3983–3984. https://doi.org/10.1200/JCO.2015.63.5946

    Article  CAS  PubMed  Google Scholar 

  91. Nabhan C, Smith SM, Cifu AS (2016) Surveillance imaging in patients in remission from Hodgkin and diffuse large B-cell lymphoma. JAMA 315(19):2115–2116. https://doi.org/10.1001/jama.2016.4913

    Article  PubMed  Google Scholar 

  92. Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. https://doi.org/10.1038/nrclinonc.2017.14

  93. Malentacchi F, Pizzamiglio S, Verderio P, Pazzagli M, Orlando C, Ciniselli CM, Gunther K, Gelmini S (2015) Influence of storage conditions and extraction methods on the quantity and quality of circulating cell-free DNA (ccfDNA): the SPIDIA-DNAplas external quality assessment experience. Clin Chem Lab Med 53(12):1935–1942. https://doi.org/10.1515/cclm-2014-1161

    Article  CAS  PubMed  Google Scholar 

  94. Parpart-Li S, Bartlett B, Popoli M et al (2016) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23(10):2471–2477. https://doi.org/10.1158/1078-0432.CCR-16-1691

    Article  CAS  PubMed  Google Scholar 

  95. El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230. https://doi.org/10.1016/j.cca.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  96. Devonshire AS, Whale AS, Gutteridge A, Jones G, Cowen S, Foy CA, Huggett JF (2014) Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 406(26):6499–6512. https://doi.org/10.1007/s00216-014-7835-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vandenberghe P, Wlodarska I, Tousseyn T et al (2015) Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2(2):e55–e65. https://doi.org/10.1016/s2352-3026(14)00039-8

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (81170485, 81170488, 81370657, and 81470328), Key Projects of the Health Department of Jiangsu Province (K201108), Jiangsu Province’s Medical Elite Programme (RC2011169), the National Public Health Grand Research Foundation (201202017), a project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institute (JX10231801), Project of National Key Clinical Specialty, the National Science & Technology Pillar Programme (2014BAI09B12), and a project funded by Jiangsu Provincial Special Programme of Medical Science (BL2014086).

Author information

Authors and Affiliations

Authors

Contributions

F-T W and L L searched the literature and drafted the manuscript. All authors read, revised, and approved the final manuscript.

Corresponding authors

Correspondence to Wei Xu or Jian-Yong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, FT., Lu, L., Xu, W. et al. Circulating tumor DNA: clinical roles in diffuse large B cell lymphoma. Ann Hematol 98, 255–269 (2019). https://doi.org/10.1007/s00277-018-3529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3529-9

Keywords

Navigation