Skip to main content

Advertisement

Log in

Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152. https://doi.org/10.1056/NEJMra1406184

    Article  PubMed  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  3. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346. https://doi.org/10.1038/nature10887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Qiu MT, Hu JW, Yin R, Xu L (2013) Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol 34(2):613–620. https://doi.org/10.1007/s13277-013-0658-6

    Article  PubMed  CAS  Google Scholar 

  6. Wang L, Zhao Z, Feng W, Ye Z, Dai W, Zhang C, Peng J, Wu K (2016) Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget 7(32):51713–51719. https://doi.org/10.18632/oncotarget.10563

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu L, Chen X, Zhang Y, Hu Y, Shen X, Zhu W (2017) Long non-coding RNA TUG1 promotes endometrial cancer development via inhibiting miR-299 and miR-34a-5p. Oncotarget 8(19):31386–31394. https://doi.org/10.18632/oncotarget.15607

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang PQ, Wu YX, Zhong XD, Liu B, Qiao G (2017) Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma. Eur Rev Med Pharmacol Sci 21(1):82–86

    PubMed  Google Scholar 

  9. Li T, Liu Y, Xiao H, Xu G (2017) Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer 24(4):535–543. https://doi.org/10.1007/s12282-016-0736-x

    Article  PubMed  Google Scholar 

  10. Zhai HY, Sui MH, Yu X, Qu Z, Hu JC, Sun HQ, Zheng HT, Zhou K, Jiang LX (2016) Overexpression of long non-coding RNA TUG1 promotes colon cancer progression. Med Sci Monit 22:3281–3287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wenzel A, Akbasli E, Gorodkin J (2012) RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 28(21):2738–2746. https://doi.org/10.1093/bioinformatics/bts519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24(22):2657–2663. https://doi.org/10.1093/bioinformatics/btn193

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16(5):806–812. https://doi.org/10.1093/bib/bbu048

    Article  PubMed  CAS  Google Scholar 

  14. Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E, Garcia-Garcia J, Sanz F, Furlong LI (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45(D1):D833–D839. https://doi.org/10.1093/nar/gkw943

    Article  PubMed  CAS  Google Scholar 

  15. Estey E, Dohner H (2006) Acute myeloid leukaemia. Lancet 368(9550):1894–1907. https://doi.org/10.1016/S0140-6736(06)69780-8

    Article  PubMed  Google Scholar 

  16. Pan JQ, Zhang YQ, Wang JH, Xu P, Wang W (2017) lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia. Int J Mol Med. https://doi.org/10.3892/ijmm.2017.2888

  17. Hirano T, Yoshikawa R, Harada H, Harada Y, Ishida A, Yamazaki T (2015) Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Mol Cancer 14:90. https://doi.org/10.1186/s12943-015-0364-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ou C, Li G (2017) Long non-coding RNA TUG1: a novel therapeutic target in small cell lung cancer. J Thorac Dis 9(7):E644–E645. https://doi.org/10.21037/jtd.2017.06.94

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iliev R, Kleinova R, Juracek J, Dolezel J, Ozanova Z, Fedorko M, Pacik D, Svoboda M, Stanik M, Slaby O (2016) Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol 37(10):13385–13390. https://doi.org/10.1007/s13277-016-5177-9

    Article  PubMed  CAS  Google Scholar 

  20. Zhang E, He X, Yin D, Han L, Qiu M, Xu T, Xia R, Xu L, Yin R, De W (2016) Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis 7:e2109. https://doi.org/10.1038/cddis.2015.356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sun J, Ding C, Yang Z, Liu T, Zhang X, Zhao C, Wang J (2016) The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J Transl Med 14:42. https://doi.org/10.1186/s12967-016-0786-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zeng B, Ye H, Chen J, Cheng D, Cai C, Chen G, Chen X, Xin H, Tang C, Zeng J (2017) LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget 8(69):113650–113661. https://doi.org/10.18632/oncotarget.21922

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo P, Zhang G, Meng J, He Q, Li Z, Guan Y (2018) Upregulation of long non-coding RNA TUG1 promotes bladder cancer cell 5 proliferation, migration and invasion by inhibiting miR-29c. Oncol Res. https://doi.org/10.3727/096504018X15152085755247

  24. Fang T, Huang H, Li X, Liao J, Yang Z, Hoffman RM, Cheng XI, Liang L, Hu W, Yun S (2018) Effects of siRNA silencing of TUG1 and LCAL6 long non-coding RNAs on patient-derived xenograft of non-small cell lung cancer. Anticancer Res 38(1):179–186. https://doi.org/10.21873/anticanres.12206

    Article  PubMed  Google Scholar 

  25. Jiang L, Wang W, Li G, Sun C, Ren Z, Sheng H, Gao H, Wang C, Yu H (2016) High TUG1 expression is associated with chemotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol 78(2):333–339. https://doi.org/10.1007/s00280-016-3066-y

    Article  PubMed  CAS  Google Scholar 

  26. Kuang D, Zhang X, Hua S, Dong W, Li Z (2016) Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition. Exp Mol Pathol 101(2):267–273. https://doi.org/10.1016/j.yexmp.2016.09.008

    Article  PubMed  CAS  Google Scholar 

  27. Zhu J, Shi H, Liu H, Wang X, Li F (2017) Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget 8(39):65253–65264. https://doi.org/10.18632/oncotarget.18224

    Article  PubMed  PubMed Central  Google Scholar 

  28. Warner SL, Bearss DJ, Han H, Von Hoff DD (2003) Targeting Aurora-2 kinase in cancer. Mol Cancer Ther 2(6):589–595

    PubMed  CAS  Google Scholar 

  29. Lee EC, Frolov A, Li R, Ayala G, Greenberg NM (2006) Targeting Aurora kinases for the treatment of prostate cancer. Cancer Res 66(10):4996–5002. https://doi.org/10.1158/0008-5472.CAN-05-2796

    Article  PubMed  CAS  Google Scholar 

  30. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10(12):825–841. https://doi.org/10.1038/nrc2964

    Article  PubMed  CAS  Google Scholar 

  31. Chuang TP, Wang JY, Jao SW, Wu CC, Chen JH, Hsiao KH, Lin CY, Chen SH, Su SY, Chen YJ, Chen YT, Wu DC, Li LH (2016) Over-expression of AURKA, SKA3 and DSN1 contributes to colorectal adenoma to carcinoma progression. Oncotarget 7(29):45803–45818. https://doi.org/10.18632/oncotarget.9960

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, Pavesi L, Amato A (2016) AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep 6:28436. https://doi.org/10.1038/srep28436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wu J, Yang L, Shan Y, Cai C, Wang S, Zhang H (2016) AURKA promotes cell migration and invasion of head and neck squamous cell carcinoma through regulation of the AURKA/Akt/FAK signaling pathway. Oncol Lett 11(3):1889–1894. https://doi.org/10.3892/ol.2016.4110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lucena-Araujo AR, de Oliveira FM, Leite-Cueva SD, dos Santos GA, Falcao RP, Rego EM (2011) High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leuk Res 35(2):260–264. https://doi.org/10.1016/j.leukres.2010.07.034

    Article  PubMed  CAS  Google Scholar 

  35. Ye D, Garcia-Manero G, Kantarjian HM, Xiao L, Vadhan-Raj S, Fernandez MH, Nguyen MH, Medeiros LJ, Bueso-Ramos CE (2009) Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia. J Hematop 2(1):2–8. https://doi.org/10.1007/s12308-008-0019-3

    Article  PubMed  Google Scholar 

  36. Huang XF, Luo SK, Xu J, Li J, Xu DR, Wang LH, Yan M, Wang XR, Wan XB, Zheng FM, Zeng YX, Liu Q (2008) Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 111(5):2854–2865. https://doi.org/10.1182/blood-2007-07-099325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81201857) and Nantong Science and Technology Project Foundation, China (No. MS12016012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Liu or Hongming Huang.

Ethics declarations

Ethics statement

This study was performed under the Institutional Review Board approvals from The Affiliated Hospital of Nantong University Hospital and conducted in accordance with the Declaration of Helsinki. Written informed consents had been obtained from all patients and controls.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, L., Zhao, F. et al. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol 97, 1375–1389 (2018). https://doi.org/10.1007/s00277-018-3315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3315-8

Keywords

Navigation