Skip to main content

Advertisement

Log in

Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Although childhood acute lymphoblastic leukemia (ALL) is characterized by high remission rates, there are still patients who experience poor response to therapy or toxic effects due to intensive treatment. In the present study, we examined the expression profile of miR-143 and miR-182 in childhood ALL and evaluated their clinical significance for patients receiving Berlin–Frankfurt–Münster (BFM) protocol. Bone marrow specimens from 125 childhood ALL patients upon diagnosis and the end-of-induction (EoI; day 33), as well as from 64 healthy control children undergone RNA extraction, polyadenylation, and reverse transcription. Expression levels of miRNAs were quantified by qPCR analysis. Patients’ cytogenetic, immunohistotype and MRD evaluation was performed according to international guidelines. Median follow-up time was 86.0 months (95% CI 74.0–98.0), while patients’ mean DFS and OS intervals were 112.0 months (95% CI 104.2–119.8) and 109.2 months (95% CI 101.2–117.3), respectively. Bone marrow levels of miR-143/miR-182 were significantly decreased in childhood ALL patients at diagnosis and increased in more than 90% of patients at the EoI. Patients’ survival analysis highlighted that children overexpressing miR-143/miR-182 at the EoI presented significantly higher risk for short-term relapse (log-rank test: p = 0.021; Cox regression: HR = 4.911, p = 0.038) and death (log-rank test: p = 0.028; Cox regression: HR = 4.590, p = 0.046). Finally, the evaluation of the miR-143/miR-182 EoI levels along with the established disease prognostic markers resulted to improved prediction of BFM-treated patients’ survival outcome and response to therapy and additionally to superior BFM risk stratification specificity. Concluding, miR-143 and miR-182 could serve as novel prognostic molecular markers for pediatric ALL treated with BFM chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Analysis of miR-143/miR-182 expression in childhood ALL patients and correlation with clinicopathological parameters.
Fig. 2: Overexpression of miR-143 and/or miR-182 at the EoI of BFM protocol (day 33) correlates with patients’ poor treatment outcome.
Fig. 3: Childhood ALL patients overexpressing miR-143 and/or miR-182 at the EoI of the BFM protocol (day 33) are at significant higher risk for disease short-term relapse and poor survival outcome.
Fig. 4: Evaluation of miR-143/miR-182 levels at the EoI (day 33) strengthens the prognostic value of the established and clinically used disease markers.
Fig. 5: Evaluation of miR-143/miR-182 levels at the EoI (day 33) improves significantly the specificity BFM risk group stratification.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  2. Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, Vora A, Baruchel A, Silverman LB, Schmiegelow K, Escherich G, Horibe K, Benoit YC, Izraeli S, Yeoh AE, Liang DC, Downing JR, Evans WE, Relling MV, Mullighan CG (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33(27):2938–2948. https://doi.org/10.1200/JCO.2014.59.1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pui C-H, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 120(6):1165–1174. https://doi.org/10.1182/blood-2012-05-378943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Möricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dördelmann M, Löning L, Beier R, Ludwig W-D, Ratei R, Harbott J, Boos J, Mann G, Niggli F, Feldges A, Henze G, Welte K, Beck J-D, Klingebiel T, Niemeyer C, Zintl F, Bode U, Urban C, Wehinger H, Niethammer D, Riehm H, Schrappe M (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111(9):4477–4489. https://doi.org/10.1182/blood-2007-09-112920

    Article  PubMed  CAS  Google Scholar 

  5. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, Gonzalez A, Izraeli S, Janic D, Jazbec J, Konja J, Kaiserova E, Kowalczyk J, Kovacs G, Li C-K, Magyarosy E, Popa A, Stark B, Jabali Y, Trka J, Hrusak O, Riehm H, Masera G, Schrappe M (2014) Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the Randomized Intercontinental Trial ALL IC-BFM 2002. J Clin Oncol 32(3):174–184. https://doi.org/10.1200/jco.2013.48.6522

    Article  PubMed  CAS  Google Scholar 

  6. ALL IC-BFM 2009—a randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia (2010) International BFM Study Group (I-BFM-SG), Kiel, Germany

  7. Samudio I, Konopleva M, Carter B, Andreeff M (2010) Apoptosis in leukemias: regulation and therapeutic targeting. In: Nagarajan L (ed) Acute myelogenous leukemia: genetics, biology and therapy. Springer, New York, pp 197–217. https://doi.org/10.1007/978-0-387-69259-3_12

    Chapter  Google Scholar 

  8. Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A (2012) The role of BCL2 family of apoptosis regulator proteins in acute and chronic Leukemias. Adv Hematol 2012:15. https://doi.org/10.1155/2012/524308

    Article  CAS  Google Scholar 

  9. Vogler M, Walter HS, Dyer MJS (2017) Targeting anti-apoptotic BCL2 family proteins in haematological malignancies—from pathogenesis to treatment. Br J Haematol 178(3):364–379. https://doi.org/10.1111/bjh.14684

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R (2004) Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 11(S1):S45–S55

    Article  PubMed  CAS  Google Scholar 

  11. Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA, De Bont ES (2002) Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol 21(6):1339–1345. https://doi.org/10.3892/ijo.21.6.1339

    Article  PubMed  CAS  Google Scholar 

  12. Richardson DS, Johnson SA (1997) Anthracyclines in haematology: preclinical studies, toxicity and delivery systems. Blood Rev 11(4):201–223. https://doi.org/10.1016/S0268-960X(97)90020-5

    Article  PubMed  CAS  Google Scholar 

  13. Fransecky L, Mochmann LH, Baldus CD (2015) Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. Mol Cell Ther 3:2. https://doi.org/10.1186/s40591-015-0040-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G, Kaindl U, Kauer M, Dworzak MN, Stoiber D, Haas OA, Panzer-Grumayer R (2012) Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia 26(5):927–933 http://www.nature.com/leu/journal/v26/n5/suppinfo/leu2011322s1.html

    Article  PubMed  CAS  Google Scholar 

  15. Silva A, Girio A, Cebola I, Santos CI, Antunes F, Barata JT (2011) Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 25(6):960–967 http://www.nature.com/leu/journal/v25/n6/suppinfo/leu201156s1.html

    Article  PubMed  CAS  Google Scholar 

  16. Hers I, Vincent EE, Tavaré JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527. https://doi.org/10.1016/j.cellsig.2011.05.004

    Article  PubMed  CAS  Google Scholar 

  17. Martelli AM, Evangelisti C, Chappell W, Abrams SL, Basecke J, Stivala F, Donia M, Fagone P, Nicoletti F, Libra M, Ruvolo V, Ruvolo P, Kempf CR, Steelman LS, McCubrey JA (2011) Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia 25(7):1064–1079

    Article  PubMed  CAS  Google Scholar 

  18. Morishita N, Tsukahara H, Chayama K, Ishida T, Washio K, Miyamura T, Yamashita N, Oda M, Morishima T (2012) Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 59(1):83–89. https://doi.org/10.1002/pbc.24034

    Article  PubMed  Google Scholar 

  19. Bissels U, Bosio A, Wagner W (2012) MicroRNAs are shaping the hematopoietic landscape. Haematologica 97(2):160–167. https://doi.org/10.3324/haematol.2011.051730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhao H, Wang D, Du W, Gu D, Yang R (2010) MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74(3):149–155. https://doi.org/10.1016/j.critrevonc.2009.05.001

    Article  PubMed  Google Scholar 

  21. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R, den Boer ML (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322. https://doi.org/10.1038/leu.2008.286

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y, Li Z, He C, Wang D, Yuan X, Chen J, Jin J (2010) MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cell Mol Dis 44(3):191–197. https://doi.org/10.1016/j.bcmd.2009.12.010

    Article  CAS  Google Scholar 

  23. Schotte D, De Menezes RX, Moqadam FA, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R, Den Boer ML (2011) MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 96(5):703–711. https://doi.org/10.3324/haematol.2010.026138

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schotte D, Pieters R, Den Boer ML (2012) MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26(1):1–12. https://doi.org/10.1038/leu.2011.151

    Article  PubMed  CAS  Google Scholar 

  25. Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F (2010) microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep 24(5):1363–1369. https://doi.org/10.3892/or_00000994

    Article  PubMed  CAS  Google Scholar 

  26. Yan D, Dong XD, Chen X, Yao S, Wang L, Wang J, Wang C, Hu D-N, Qu J, Tu L (2012) Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2. PLoS One 7(7):e40967. https://doi.org/10.1371/journal.pone.0040967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S, Akao Y (2013) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 328(2):353–361. https://doi.org/10.1016/j.canlet.2012.10.017

    Article  PubMed  CAS  Google Scholar 

  28. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216. https://doi.org/10.1074/jbc.M109.031427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang A, Ma J, Wu M, Qin W, Zhao B, Shi Y, Jin Y, Xie Y (2012) Aberrant microRNA-182 expression is associated with glucocorticoid resistance in lymphoblastic malignancies. Leuk Lymphoma 53(12):2465–2473. https://doi.org/10.3109/10428194.2012.693178

    Article  PubMed  CAS  Google Scholar 

  30. Pui C-H (2010) Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 109(11):777–787. https://doi.org/10.1016/S0929-6646(10)60123-4

    Article  PubMed  Google Scholar 

  31. Bhojwani D, Pui C-H (2013) Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14(6):e205–e217. https://doi.org/10.1016/S1470-2045(12)70580-6

    Article  PubMed  Google Scholar 

  32. de Oliveira JC, Brassesco MS, Scrideli CA, Tone LG, Narendran A (2012) MicroRNA expression and activity in pediatric acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 59(4):599–604. https://doi.org/10.1002/pbc.24167

    Article  PubMed  Google Scholar 

  33. Zhang H, Luo X-Q, Zhang P, Huang L-B, Zheng Y-S, Wu J, Zhou H, Qu L-H, Xu L, Chen Y-Q (2009) MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 4(11):e7826. https://doi.org/10.1371/journal.pone.0007826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang H, Yang J-H, Zheng Y-S, Zhang P, Chen X, Wu J, Xu L, Luo X-Q, Ke Z-Y, Zhou H, Qu L-H, Chen Y-Q (2009) Genome-wide analysis of small RNA and novel microRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach. PLoS One 4(9):e6849. https://doi.org/10.1371/journal.pone.0006849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Han B-W, Feng D-D, Li Z-G, Luo X-Q, Zhang H, Li X-J, Zhang X-J, Zheng L-L, Zeng C-W, Lin K-Y, Zhang P, Xu L, Chen Y-Q (2011) A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL. Hum Mol Genet 20(24):4903–4915. https://doi.org/10.1093/hmg/ddr428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shen J, Zhang Y, Fu H, Wu D, Zhou H (2014) Overexpression of microRNA-143 inhibits growth and induces apoptosis in human leukemia cells. Oncol Rep 31(5):2035–2042. https://doi.org/10.3892/or.2014.3078

    Article  PubMed  CAS  Google Scholar 

  37. Dou L, Zheng D, Li J, Li Y, Gao L, Wang L, Yu L (2012) Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene 31(4):507–517 http://www.nature.com/onc/journal/v31/n4/suppinfo/onc2011248s1.html

    Article  PubMed  CAS  Google Scholar 

  38. dos Santos Ferreira AC, Robaina MC, de Rezende LMM, Severino P, Klumb CE (2014) Histone deacetylase inhibitor prevents cell growth in Burkitt’s lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann Hematol 93(6):983–993. https://doi.org/10.1007/s00277-014-2021-4

    Article  CAS  Google Scholar 

  39. Akao Y, Nakagawa Y, Iio A, Naoe T (2009) Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res 33(11):1530–1538. https://doi.org/10.1016/j.leukres.2009.04.019

    Article  PubMed  CAS  Google Scholar 

  40. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98(12):1914–1920. https://doi.org/10.1111/j.1349-7006.2007.00618.x

    Article  PubMed  CAS  Google Scholar 

  41. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77(1):12–21

    Article  PubMed  CAS  Google Scholar 

  42. Noguchi S, Mori T, Hoshino Y, Maruo K, Yamada N, Kitade Y, Naoe T, Akao Y (2011) MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett 307(2):211–220. https://doi.org/10.1016/j.canlet.2011.04.005

    Article  PubMed  CAS  Google Scholar 

  43. Dixon-McIver A, East P, Mein CA, Cazier J-B, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S (2008) Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 3(5):e2141. https://doi.org/10.1371/journal.pone.0002141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lai T-H, Zecevic A, Ewald B, Chaomei L, Rizzotto L, Sulda M, Papaioannou D, Garzon R, Plunkett W, Sampath D (2015) HDAC inhibition induces microRNA-182 which targets Rad51 protein and impairs homologous recombination repair to sensitize cells to the double strand break inducing nucleoside analog, sapacitabine in AML. Blood 126(23):3639–3639

    Google Scholar 

  45. Sun Y, Fang R, Li C, Li L, Li F, Ye X, Chen H (2010) Hsa-Mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 396(2):501–507. https://doi.org/10.1016/j.bbrc.2010.04.127

    Article  PubMed  CAS  Google Scholar 

  46. Kong W-Q, Bai R, Liu T, Cai C-L, Liu M, Li X, Tang H (2012) MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J 279(7):1252–1260. https://doi.org/10.1111/j.1742-4658.2012.08519.x

    Article  PubMed  CAS  Google Scholar 

  47. Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Brauer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Muller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G (2017) Disruption of the C/EBPalpha-miR-182 balance impairs granulocytic differentiation. Nat Commun 8(1):46. https://doi.org/10.1038/s41467-017-00032-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cheng T, Hu C, Yang H, Cao L, An J (2014) Transforming growth factor-β-induced miR-143 expression in regulation of non-small cell lung cancer cell viability and invasion capacity in vitro and in vivo. Int J Oncol 45(5):1977–1988. https://doi.org/10.3892/ijo.2014.2623

    Article  PubMed  CAS  Google Scholar 

  49. Blank U, Karlsson S (2011) The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25(9):1379–1388. https://doi.org/10.1038/leu.2011.95

    Article  PubMed  CAS  Google Scholar 

  50. Larsson J, Karlsson S (2005) The role of Smad signaling in hematopoiesis. Oncogene 24(37):5676–5692. https://doi.org/10.1038/sj.onc.1208920

    Article  PubMed  CAS  Google Scholar 

  51. Ma J, Xie Y, Shi Y, Qin W, Zhao B, Jin Y (2008) Glucocorticoid-induced apoptosis requires FOXO3A activity. Biochem Biophys Res Commun 377(3):894–898. https://doi.org/10.1016/j.bbrc.2008.10.097

    Article  PubMed  CAS  Google Scholar 

  52. Fasihi-Ramandi M, Moridnia A, Najafi A, Sharifi M (2017) Inducing cell proliferative prevention in human acute promyelocytic leukemia by miR-182 inhibition through modulation of CASP9 expression. Biomed Pharmacother 89:1152–1158. https://doi.org/10.1016/j.biopha.2017.02.100

    Article  PubMed  CAS  Google Scholar 

  53. Sharifi M, Moridnia A (2017) Apoptosis-inducing and antiproliferative effect by inhibition of miR-182-5p through the regulation of CASP9 expression in human breast cancer. Cancer Gene Ther 24(2):75–82. https://doi.org/10.1038/cgt.2016.79

    Article  PubMed  CAS  Google Scholar 

  54. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng S-Y, Li J (2010) miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 177(1):29–38. https://doi.org/10.2353/ajpath.2010.090812

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirata H, Ueno K, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2013) MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PLoS One 8(1):e55502. https://doi.org/10.1371/journal.pone.0055502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song C, Zhang L, Wang J, Huang Z, Li X, Wu M, Li S, Tang H, Xie X (2016) High expression of microRNA-183/182/96 cluster as a prognostic biomarker for breast cancer. Sci Rep 6:24502. https://doi.org/10.1038/srep24502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kulda V, Pesta M, Topolcan O, Liska V, Treska V, Sutnar A, Rupert K, Ludvikova M, Babuska V, Holubec L, Cerny R (2010) Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 200(2):154–160. https://doi.org/10.1016/j.cancergencyto.2010.04.015

    Article  PubMed  CAS  Google Scholar 

  58. Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Scorilas A (2015) Uncovering the clinical utility of miR-143, miR-145 and miR-224 for predicting the survival of bladder cancer patients following treatment. Carcinogenesis 36(5):528–537. https://doi.org/10.1093/carcin/bgv024

    Article  PubMed  CAS  Google Scholar 

  59. Akagi I, Miyashita M, Ishibashi O, Mishima T, Kikuchi K, Makino H, Nomura T, Hagiwara N, Uchida E, Takizawa T (2011) Relationship between altered expression levels of MIR21, MIR143, MIR145, and MIR205 and clinicopathologic features of esophageal squamous cell carcinoma. Dis Esophagus 24(7):523–530. https://doi.org/10.1111/j.1442-2050.2011.01177.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to sincerely thank Dr. M. Varvoutsi, Dr. D. Doganis, and Dr. M. Servitzoglou for their valuable professional assistance in the characterization and collection of our samples. We would also like to thank the nursing staff of the Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, for their expert help with the collection of samples.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: D. Gourgiotis, A. Scorilas, M. Avgeris

Development of methodology: M. Avgeris, D. Piatopoulou, M. Xagorari

Acquisition of data: D. Piatopoulou, M. Avgeris, I. Drakaki, A. Marmarinos, M. Xagorari, M. Baka, A. Pourtsidis, L. Kossiva

Analysis and interpretation of data: M. Avgeris, D. Piatopoulou

Acquired and managed patients: M. Baka, A. Pourtsidis, L. Kossiva

Drafting of the manuscript: D. Piatopoulou, M. Avgeris, I. Drakaki, A. Marmarinos, M. Xagorari

Critical revision of the manuscript: M. Avgeris, A. Marmarinos, M. Baka, A. Pourtsidis, L. Kossiva, D. Gourgiotis, A. Scorilas

Administrative, technical, or material support: D. Gourgiotis, A. Scorilas, M. Baka, A. Pourtsidis, L. Kossiva

Study supervision: A. Scorilas, D. Gourgiotis

Approval of the submitted and final version: all authors

Corresponding author

Correspondence to Andreas Scorilas.

Ethics declarations

The study was approved by the Ethics Committee of “P. & A. Kyriakou” Children’s Hospital, Athens, Greece, and performed with respect to the ethical standards of the Declaration of Helsinki, as revised in 2008. Informed consent was obtained from all parents and legal guardians of the participating patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piatopoulou, D., Avgeris, M., Drakaki, I. et al. Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia. Ann Hematol 97, 1169–1182 (2018). https://doi.org/10.1007/s00277-018-3292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3292-y

Keywords

Navigation