Skip to main content

Advertisement

Log in

The orally available multikinase inhibitor regorafenib (BAY 73-4506) in multiple myeloma

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

A promising approach to the treatment of multiple myeloma (MM) involves agents that target not only the myeloma cells directly, but also the tumor microenvironment which promotes tumor cell growth, angiogenesis, and MM bone disease. Here we investigate the orally available multikinase inhibitor, regorafenib (BAY 73-4506), for its therapeutic efficacy in MM. Regorafenib is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b) as well as oncogenic (c-KIT, RET, FGFR, Raf) kinases. We show that regorafenib induces apoptosis in all MM cell lines at below clinically achievable concentrations. Regorafenib overcomes the growth advantage conferred by a stroma cell MM and an endothelial cell MM, co-culture systems, and abrogates growth factor-stimulated MEK, ERK, and AKT phosphorylation at nanomolar to micromolar concentrations. Moreover, it inhibits endothelial cell growth and tubule formation, abrogates both VEGF secretion and VEGF-induced MM cell migration, inhibits osteoclastogenesis, and shows synergistic cytotoxicity with dexamethasone, the immunomodulatory drug pomalidomide, and the p110δ inhibitor idelalisib. Most importantly, regorafenib significantly delays tumor growth in a xenograft mouse model of human MM. These results provide the rationale for further clinical evaluation of regorafenib, alone and in combination, in the treatment of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520. https://doi.org/10.1182/blood-2007-10-116129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339. https://doi.org/10.1016/S0140-6736(09)60221-X

    Article  PubMed  Google Scholar 

  3. Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D, Anderson KC (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101(2):703–705. https://doi.org/10.1182/blood-2002-06-1874

    Article  CAS  PubMed  Google Scholar 

  4. Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000. https://doi.org/10.1038/sj.onc.1204833

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17(10):2025–2031. https://doi.org/10.1038/sj.leu.2403084

    Article  CAS  PubMed  Google Scholar 

  6. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435. https://doi.org/10.1182/blood.V98.2.428

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, Thierauch KH, Zopf D (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129(1):245–255

    Article  CAS  PubMed  Google Scholar 

  8. Grothey A, Van CE, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312. https://doi.org/10.1016/S0140-6736(12)61900-X

    Article  CAS  PubMed  Google Scholar 

  9. Bruix J, Merle P, Granito A, Huang Y-H, Bodoky G, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross Paul J, Qin S, Song T, Bronowicki J-P, Ollivier-Hourmand I, Kudo M, LeBerre M-A, Baumhauer A, Meinhardt G, Han G (2016) LBA-03Efficacy and safety of regorafenib versus placebo in patients with hepatocellular carcinoma (HCC) progressing on sorafenib: results of the international, randomized phase 3 RESORCE trial. Ann Oncol 27(suppl 2):ii140–ii141. https://doi.org/10.1093/annonc/mdw237.03

    Article  Google Scholar 

  10. Mir O, Brodowicz T, Italiano A, Wallet J, Blay JY, Bertucci F, Chevreau C, Piperno-Neumann S, Bompas E, Salas S, Perrin C, Delcambre C, Liegl-Atzwanger B, Toulmonde M, Dumont S, Ray-Coquard I, Clisant S, Taieb S, Guillemet C, Rios M, Collard O, Bozec L, Cupissol D, Saada-Bouzid E, Lemaignan C, Eisterer W, Isambert N, Chaigneau L, Cesne AL, Penel N (2016) Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 17(12):1732–1742. https://doi.org/10.1016/s1470-2045(16)30507-1

    Article  CAS  PubMed  Google Scholar 

  11. Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T, Salgia R, Gupta D, Chauhan D, Anderson KC (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881

    Article  CAS  PubMed  Google Scholar 

  12. Raab MS, Breitkreutz I, Anderhub S, Ronnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, Fruehauf J, Nissen F, Mier W, Haberkorn U, Ho AD, Goldschmidt H, Anderson KC, Clausen MH, Kramer A (2012) GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 72(20):5374–5385. https://doi.org/10.1158/0008-5472.CAN-12-2026

    Article  CAS  PubMed  Google Scholar 

  13. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64(20):7500–7506. https://doi.org/10.1158/0008-5472.CAN-04-0124

    Article  CAS  PubMed  Google Scholar 

  14. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Chauhan D, Munshi NC, Richardson PG, Anderson KC (2007) Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol 139(1):55–63

    Article  CAS  PubMed  Google Scholar 

  15. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Mitsiades C, Chauhan D, Okawa Y, Munshi NC, Richardson PG, Anderson KC (2008) Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22(10):1925–1932. https://doi.org/10.1038/leu.2008.174

    Article  CAS  PubMed  Google Scholar 

  16. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. https://doi.org/10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  17. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.can-09-1947

    Article  CAS  PubMed  Google Scholar 

  18. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4

    Article  CAS  Google Scholar 

  19. Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW, Anderson KC (1997) Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 89(1):227–234

    CAS  PubMed  Google Scholar 

  20. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, Anderson KC (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5):2212–2221

    CAS  PubMed  Google Scholar 

  21. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115. https://doi.org/10.1016/S1074-7613(00)80011-4

    Article  CAS  PubMed  Google Scholar 

  22. Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, Halling T, Rajkumar SV, Kumar S (2012) Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway. PLoS One 7(11):e50005. https://doi.org/10.1371/journal.pone.0050005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrulis M, Lehners N, Capper D, Penzel R, Heining C, Huellein J, Zenz T, von Deimling A, Schirmacher P, Ho AD, Goldschmidt H, Neben K, Raab MS (2013) Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov 3(8):862–869. https://doi.org/10.1158/2159-8290.cd-13-0014

    Article  CAS  PubMed  Google Scholar 

  24. Strumberg D, Scheulen ME, Schultheis B, Richly H, Frost A, Buchert M, Christensen O, Jeffers M, Heinig R, Boix O, Mross K (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106(11):1722–1727. https://doi.org/10.1038/bjc.2012.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59(3):728–733

    CAS  PubMed  Google Scholar 

  26. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636

    CAS  PubMed  Google Scholar 

  27. Callander NS, Roodman GD (2001) Myeloma bone disease. Semin Hematol 38(3):276–285. https://doi.org/10.1016/S0037-1963(01)90020-4

    Article  CAS  PubMed  Google Scholar 

  28. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH (2002) The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30(1):71–77. https://doi.org/10.1016/S8756-3282(01)00657-3

    Article  CAS  PubMed  Google Scholar 

  29. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120(14):2817–2825. https://doi.org/10.1182/blood-2012-05-425934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, Karlin L, Goldschmidt H, Banos A, Oriol A, Alegre A, Chen C, Cavo M, Garderet L, Ivanova V, Martinez-Lopez J, Belch A, Palumbo A, Schey S, Sonneveld P, Yu X, Sternas L, Jacques C, Zaki M, Dimopoulos M (2013) Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 14(11):1055–1066. https://doi.org/10.1016/s1470-2045(13)70380-2

    Article  PubMed  Google Scholar 

  31. Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280(38):33076–33082. https://doi.org/10.1074/jbc.M507201200

    Article  CAS  PubMed  Google Scholar 

  32. Hsu JH, Shi Y, Frost P, Yan H, Hoang B, Sharma S, Gera J, Lichtenstein A (2004) Interleukin-6 activates phosphoinositol-3′ kinase in multiple myeloma tumor cells by signaling through RAS-dependent and, separately, through p85-dependent pathways. Oncogene 23(19):3368–3375. https://doi.org/10.1038/sj.onc.1207459

    Article  CAS  PubMed  Google Scholar 

  33. Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17(1):338–344. https://doi.org/10.1128/MCB.17.1.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998. https://doi.org/10.1074/jbc.275.2.992

    Article  CAS  PubMed  Google Scholar 

  35. Chang JE, Kahl BS (2014) PI3-kinase inhibitors in chronic lymphocytic leukemia. Curr Hematol Malig Reports 9(1):33–43. https://doi.org/10.1007/s11899-013-0189-7

    Article  Google Scholar 

  36. Fruman DA, Rommel C (2011) PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 1(7):562–572. https://doi.org/10.1158/2159-8290.CD-11-0249

    Article  CAS  PubMed  Google Scholar 

  37. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O'Brien S, Yu A, Miller LL, Lannutti BJ, Burger JA (2011) The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118(13):3603–3612. https://doi.org/10.1182/blood-2011-05-352492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, Cristea D, Calabrese E, Gorgun G, Raje NS, Richardson P, Munshi NC, Lannutti BJ, Puri KD, Giese NA, Anderson KC (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116(9):1460–1468. https://doi.org/10.1182/blood-2009-06-222943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, Von MM, Joensuu H, Badalamenti G, Blackstein M, Le CA, Schoffski P, Maki RG, Bauer S, Nguyen BB, Xu J, Nishida T, Chung J, Kappeler C, Kuss I, Laurent D, Casali PG (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302. https://doi.org/10.1016/S0140-6736(12)61857-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a MMRF senior research grant award (to K.P); a grant to the Fritz Thyssen foundation (to M.S.R.); National Institutes of Health grants RO CA 50947, PO-1 CA 78378, and P50 CA 100707; and the American Cancer Society Clinical Research Professor Award (to K.C.A.). This work was also supported by the medical faculty of science of the University of Heidelberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc S. Raab.

Ethics declarations

Written informed consent of MM patients was obtained with approval of the institutional ethics committee according to the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Supplemental Figure 1

Regorafenib induces apoptosis in MM cells. MM cells were exposed to increasing concentrations of regorafenib for 4 h or 20 h, followed by immunoblot analysis of whole cell lysates with indicated antibodies. (PPTX 111 kb)

Supplemental Figure 2

Regorafenib in combination with CAL-101 synergistically inhibit signaling pathways. MM cells were exposed to increasing concentrations of regorafenib for 4 h or 20 h, followed by immunoblot analysis of whole cell lysates with indicated antibodies. (PPTX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breitkreutz, I., Podar, K., Figueroa-Vazquez, V. et al. The orally available multikinase inhibitor regorafenib (BAY 73-4506) in multiple myeloma. Ann Hematol 97, 839–849 (2018). https://doi.org/10.1007/s00277-018-3237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3237-5

Keywords

Navigation