Skip to main content

Advertisement

Log in

Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk patients

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

All trans retinoic acid (ATRA) has revolutionized the therapy of acute promyelocytic leukemia (APL). Treatment of this leukemia with ATRA in combination with chemotherapy has resulted in complete remission rates >90 % and long-term remission rates above 80 %. Furthermore, the combination of ATRA and arsenic trioxide (ATO) was shown to be safe and effective in frontline treatment and, for patients with low and intermediate risk disease, possibly superior to the standard ATRA and anthracycline-based regimen. However, in spite of this tremendous progress, APL still remains associated with a high incidence of early death due to the frequent occurrence of an abrupt bleeding diathesis. This hemorrhagic syndrome more frequently develops in high-risk APL patients, currently defined as those exhibiting >10 × 109/L WBC at presentation. In addition to high WBC count, other molecular and immunophenotypic features have been associated with high-risk APL. Among them, the expression in APL blasts of the stem/progenitor cell antigen CD34, the neural adhesion molecule (CD56), and the T cell antigen CD2 help to identify a subset of patients at higher risk of relapse and often the expression of these markers is associated with high WBC count. At the molecular level, the short PML/RARA isoform and FLT3-internal tandem duplication (ITD) mutations have been associated with increased relapse risk. These observations indicate that extended immunophenotypic and molecular characterization of APL at diagnosis including evaluation of CD2, CD56, and CD34 antigens and of FLT3 mutations may help to better design risk-adapted treatment in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo-Coco F, Hasan SK (2014) Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 27:3–9

    Article  CAS  PubMed  Google Scholar 

  2. Ablain J, De Thé H (2014) Retinoic acid signaling in cancer: the parable of acute promyelocytic leukemia. Int J Cancer 135:2262–2272

    Article  CAS  PubMed  Google Scholar 

  3. Vickers M, Jackson G, Taylor P (2000) The incidence of acute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia 17:722–726

    Article  Google Scholar 

  4. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cancer Gemome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074

    Article  Google Scholar 

  6. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    CAS  PubMed  Google Scholar 

  7. Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z (2015) Synergistic targeted therapy for acute promyelocyticleukaemia: a model of translational research in human cancer. J Int Med; in press

  8. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121

    Article  CAS  PubMed  Google Scholar 

  9. Lo-Coco F, Cicconi L (2014) What is the standard regimen for patients with acute promyelocytic leukemia? Curr Hematol Malig Rep 9:138–143

    Article  PubMed  Google Scholar 

  10. Muroi K, Fujiwara S, Tatara R, Sugimoto M, Yamamoto C, Uehara E et al (2013) CD56 expression in normal immature granulocytes after allogeneic hematopoietic stem cell transplantation. J Clin Exp Hematol 53:247–250

    Article  Google Scholar 

  11. Montesinos P, Rayon C, Vellenga E, Brunet S, Gonzalez T, Gonzalez M et al (2011) Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimes. Blood 117:1799–1805

    Article  CAS  PubMed  Google Scholar 

  12. Ono T, Takeshita A, Kishimoto Y, Kiyoi H, Okada M, Yamauchi T et al (2014) Expression of CD56 is an unfavorable prognostic factor for acute promyelocytic leukemia with higher initial white blood cell counts. Cancer Sci 105:97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breccia M, De Propris MS, Minotti C, Stefanizzi C, Raponi S, Colofigli G et al (2014) Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients. Leuk Res 38:194–197

    Article  CAS  PubMed  Google Scholar 

  14. Lou Y, Ma Y, Suo S, Ni W, Wang Y, Pan H et al (2015) Prognostic significance of patients with newly diagnosed acute promyelocytic leukemia treated with arsenic trioxide-based frontline. Leuk Res 39:938–944

    Article  CAS  PubMed  Google Scholar 

  15. De J, Zanjani R, Hibbard M, Dabis BH (2007) Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia. Am J Pathol 128:550–557

    CAS  Google Scholar 

  16. Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nasrdi G et al (2001) CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia 15:1161–1164

    Article  CAS  PubMed  Google Scholar 

  17. Jiao B, Wu CF, Liang Y, Chen HM, Xiong SM, Chen B et al (2009) AML1-ETO9 is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia. Leukemia 23:1598–1604

    Article  CAS  PubMed  Google Scholar 

  18. Nishii K, Usui E, Katayama N, Lorenzo F, Nakase K, Kobayashi T et al (2003) Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia 17:731–737

    Article  CAS  PubMed  Google Scholar 

  19. Lin P, Hao S, Medeiros LJ, Estey EH, Pierce SA, Wang X et al (2004) Expression of CD2 in acute promyelocytic leukemia correlates with short form of PML-RARalpha transcripts and poorer prognosis. Am J Clin Pathol 121:402–407

    Article  CAS  PubMed  Google Scholar 

  20. Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E et al (1995) CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia 9:1461–1466

    CAS  PubMed  Google Scholar 

  21. Albano F, Mestice A, Pannunzio A, Lanza F, Martino B, Pastore D et al (2006) The biological characteristics of CD34+CD2+ adult acute promyelocytic leukemia and the CD34CD2 hyergranular and microgranular (M3v) phenotypes. Haematologica 91:311–316

    CAS  PubMed  Google Scholar 

  22. Xu F, Yin CX, Wang CL, Jiang XJ, Jiang L, Wang ZX et al (2014) Immunophenotypes and immune markers associated with acute promyelocytic leukemia prognosis. Dis Mark. art id 421906

  23. Foley R, Soamboonsrup P, Carter RF, Benger A, Meyer R, Walker I et al (2001) CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol 67:34–41

    Article  CAS  PubMed  Google Scholar 

  24. Guglielmi C, Martelli MP, Diverio D, Fenu S, Vegna ML, Cantu-Rajnoldi A et al (1998) Immunophenotype of adult and childhood acute promyelocytic leukemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol 102:1035–1041

    Article  CAS  PubMed  Google Scholar 

  25. Lee JJ, Cho D, Chung IJ, Cho SH, Park KS, Park MR et al (2003) CD34 expression is associated with poor clinical outcome in patients with acute promyelocytic leukemia. Am J Haematol 73:149–153

    Article  CAS  Google Scholar 

  26. Paietta E, Golonbeva O, Neuberg D, Bennett JM, Gallagher R, Racevskis et al (2004) A surrogate marker profile of PML/RARalpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry Part B 59B:1–9

    Article  CAS  Google Scholar 

  27. Breccia M, De Propris MS, Stefanizzi C, Raponi S, Modica M, Colafigli G et al (2014) Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocytic leukemia cells. Ann Hematol 93:1819–1823

    Article  CAS  PubMed  Google Scholar 

  28. Chendamarai E, Ganesan S, Alex AA, Kamath V, Nair SC, Nellickai AJ et al (2015) Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PLoS ONE 10, e0121912

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tallman M, Lo-Coco F, Kwaan H, Sanz M, Gore S (2011) Clinical roundtable monograph. Early death in patients with acute promyelocytic leukemia. Clin Adv Hematol Oncol 9:1–16

    Google Scholar 

  30. Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL et al (2011) Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 118:1248–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH (1999) Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood 93:4131–4143

    CAS  PubMed  Google Scholar 

  32. Sanz MA, Lo Coco F, Martin G, Avvisati G, Rayon C, Barbui T et al (2000) Definition of relapse risk and the role of non-anthracycline drugs for consolidation in patients with acute promyeloctic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 96:1247–1253

    CAS  PubMed  Google Scholar 

  33. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E et al (1999) A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Eur APL Group Blood 94:1192–1200

    CAS  Google Scholar 

  34. Ravandi F, Estey E, Jones D, Faderl S, O’Brien S, Fiorentino J et al (2009) Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gentuzumabozogamicin. J Clin Oncol 27:504–510

    Article  CAS  PubMed  Google Scholar 

  35. Mathews V, George B, Lakhmi KM, Viwabandya A, Bajel A, Balasubramanian P et al (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107:2627–2632

    Article  CAS  PubMed  Google Scholar 

  36. Estey E, Garcia-Manero G, Ferrajoli A, Faderl S, Verstovek S, Jones D et al (2006) Use of all-trans retinoic acid plus arsenic trioxide ad an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107:3469–3473

    Article  CAS  PubMed  Google Scholar 

  37. Daver N, Kantarjian H, Marcucci G, Pierce S, Brandt M, Dinardo C et al (2015) Clinical characteristics and outcomes in patients with acute promyelocytic leukemia and hyperleukocytosis. Br J Haematol 168:646–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montesinos P, Beagua J, Vellenga E, Rayen C, Parody R, de la Serna J et al (2009) Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood 113:775–783

    Article  CAS  PubMed  Google Scholar 

  39. Kiyoi H, Naoe T, Yokota N, Nakao M, Minami S, Kuriyama K et al (1997) Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (KOHseisho). Leukemia 11:1447–1452

    Article  CAS  PubMed  Google Scholar 

  40. Moreno I, Martin G, Bolufer P, Barragan E, Rueda E, Roman J et al (2003) Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologica 88:19–24

    CAS  PubMed  Google Scholar 

  41. Kelly LM, Kutok JL, Williams IR, Boulton CL, Curley DP, Amaral SM et al (2002) PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A 99:8283–8288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM et al (2003) A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 101:3188–3197

    Article  CAS  PubMed  Google Scholar 

  43. Breccia M, Avvisati G, Latagliata R, Carmosino I, Guarini A, De Propris MS et al (2007) Occurrence of thrombotic events in acute promyelocytic leukemia correlate with consistent immunophenotypic and molecular features. Leukemia 21:79–83

    Article  CAS  PubMed  Google Scholar 

  44. Mitrovic M, Suvajdzic N, Elezovic I, Bogdanovic A, Djordjevic V, Miljic P et al (2015) Thrombotic events in acute promyelocytic leukemia. Thromb Res 135:588–593

    Article  CAS  PubMed  Google Scholar 

  45. Gale RE, Hills R, Pizzey A, Kottaridis PD, Swirsky D, Gilkes AF et al (2005) Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 106:3768–3778

    Article  CAS  PubMed  Google Scholar 

  46. Souza Melo CP, Campos CB, Dutra AP, Neto JCA, Fenelon AJS, Neto AH et al (2015) Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk Res 39:131–137

    Article  CAS  PubMed  Google Scholar 

  47. Kutny MA, Moser BK, Laumann K, Feusner JH, Gamis A, Gregory J et al (2012) FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from Children’s Oncology Group. Pediatr Blood Cancer 59:662–667

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takenokuchi M, Kawano S, Nakamachi Y, Sakota Y, Syampurnawayi M, Saigo K et al (2012) FLT3/ITD associated with an immature immunophenotype in PML-RARα leukemia. Haematol Rep 4, e22

    Google Scholar 

  49. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S et al (2002) Alterations of the FLT3 gene in acute promyelocyticleukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 16:2185–2189

    Article  CAS  PubMed  Google Scholar 

  50. Molica M, Breccia M (2015) FLT3-ITD in acute promyelocytic leukemia: clinical distinct profile but still controversial prognosis. Leuk Res 39:397–399

    Article  PubMed  Google Scholar 

  51. Lucena-Araujo AR, Kim HT, Jacomo RH, Melo RA, Bittencourt R, Pasquini R et al (2014) Internal tandem duplication of the FLT3 gene confer poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on acute promyelocytic leukemia study. Ann Hematol 93:2011–2010

    Article  Google Scholar 

  52. Chillon MC, Santamaria C, Garcia-Sanz R, Balanzategui A, Saraquete ME, Alcocebeda M et al (2010) Log FLT3 internal tandem duplications and reduced PML-RARalpha expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Hematologica 95:745–752

    Article  CAS  Google Scholar 

  53. Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M et al (2012) All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 120:1570–1580

    Article  CAS  PubMed  Google Scholar 

  54. Shen Y, Fu YK, Zhu YM, Lou YJ, Gu ZH, Shi JY et al (2015) Mutations of epigenetic modifier genes as a poor prognostic factor in acute promyelocytic leukemia under treatment with all-trans retinoic acid and arsenic trioxide. Electromagn Biol Med 2:563–571

    Google Scholar 

  55. Gaur GC, Ramadan S, Cicconi L, Noguera NI, Luna I, Such E et al (2012) Analysis of mutational status, SNP rs16754, and expression levels of Wilms tumor 1 (WT1) gene in acute promyelocyticleukemia. Ann Hematol 91:1855–1860

    Article  CAS  PubMed  Google Scholar 

  56. Krauth MT, Alpermann T, Bacher U, Eder C, Dicker F, Ulke M et al (2015) WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia 29:660–667

    Article  CAS  PubMed  Google Scholar 

  57. Cervera J, Montesinos P, Hernandez-Rivas J, Calosanz MJ, Aventin A, Ferro MT et al (2010) Additional chromosomal abnormalities treated with all-trans retinoic acid and chemotherapy. Haematologica 95:424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Botton S, Chevret S, Canz M, Dombret H, Thomas X, Guerci A et al (2010) Additional chromosomal abnormalities in patients with acute promyelocytic leukemia (APL) do not confer poor prognosis: results of APL 93 trial. Br J Haematol 111:801–806

    Google Scholar 

  59. Albano F, Zagaria A, Anelli L, Orsini P, Minervini CP, Impera L et al (2013) Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget 5:649–658

    Article  PubMed Central  Google Scholar 

  60. Hecht A, Nowak D, Nowak V, Hanfstein B, Faldum A, Buchner T et al (2013) High expression of the Ets-related gene (ERG) is an independent prognostic marker for relapse-free survival. Ann Hematol 92:443–449

    Article  CAS  PubMed  Google Scholar 

  61. Lucena-Araujo AR, Kim H, Jacomo RH, Melo RA, Bittencourt R, Pasquini R et al (2014) Prognostic impact of KMT2E transcript level on outcome of patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium of Acute Promyelocytic Leukemia study. Br J Haematol 166:540–549

    Article  CAS  PubMed  Google Scholar 

  62. Lucena-Araujo AR, Kim H, Thomé C, Jacomo RH, Melo RA, Bittencourt R et al (2015) High ΔNp73/Tap73 ratio is associated with poor prognosis in acute promyelocytic leukemia. Blood 126:2302–2306

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sunter NJ, Scott K, Hills R, Grimwade D, Taylor S, Worrilow LJ et al (2012) A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood 119:196–205

    Article  CAS  PubMed  Google Scholar 

  64. Breccia M, Lo-Coco F (2014) Thrombo-hemorrhagic deaths in acute promyelocytic leukemia. Thromb Res 133(S2):S112–S116

    Article  CAS  PubMed  Google Scholar 

  65. Lehmann S, Ravn A, Carlsson L, Antunovic P, Deneberg S, Mollgard S et al (2011) Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish Adult Acute Leukemia Registry. Leukemia 25:1128–1134

    Article  CAS  PubMed  Google Scholar 

  66. McClellan JS, Kohrt HE, Coutre S, Gotlib JR, Majeti R, Alizadeh AA et al (2012) Treatment advances have not improved the early death rate in acute promyelocytic leukemia. Haematologica 97:133–136

    Article  PubMed  PubMed Central  Google Scholar 

  67. Altman JK, Rademaker A, Cull E, Weitner BB, Ofran Y, Rosenblat TL et al (2013) Administration of ATRA to newly diagnosed patients with acute promyelocytic leukemia is delayed contributing to early hemorrhagic death. Leuk Res 37:1004–1009

    Article  CAS  PubMed  Google Scholar 

  68. Paulson K, Serebrin A, Lambert P, Bergeron J, Everett J, Kew A et al (2014) Acute promyelocytic leukemia is characterized by stable incidence and improved survival that is restricted to patients managed in leukemia referral centres: a pan-Canadian epidemiological study. Br J Haematol 166:660–666

    Article  PubMed  Google Scholar 

  69. de la Serna J, Montesinos P, Vellenga E, Rayon C, Parody R, Leon A et al (2008) Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 111:3395–3402

    Article  PubMed  Google Scholar 

  70. Burnett A, Hunter A, Khwaja A, Bowen D, Grimwade D, Hills R et al (2015) APL of all risk groups is highly curable with a chemo-free combination of attenuated arsenic trioxide and ATRA. EHA Meeting, abstract LB 2067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Testa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Testa, U., Lo-Coco, F. Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk patients. Ann Hematol 95, 673–680 (2016). https://doi.org/10.1007/s00277-016-2622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2622-1

Keywords

Navigation