Skip to main content

Advertisement

Log in

Body mass index as a prognostic factor in Asian patients treated with chemoimmunotherapy for diffuse large B cell lymphoma, not otherwise specified

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Obesity was recently reported to confer a survival advantage in diffuse large B cell lymphoma (DLBCL) among Western populations. Given ethnic differences, previous studies recommended a revision of the WHO classification of obesity for Asians. We investigated the prognostic impact of body mass index (BMI) using modified WHO criteria in a retrospective cohort of 562 Korean patients with DLBCL. Patients were categorized into five groups according to BMI: 26 (4.6 %) as underweight (<18.5 kg/m2), 230 (40.9 %) as normal weight (18.5–22.9 kg/m2), 129 (23.0 %) as overweight (23.0–24.9 kg/m2), 160 (28.5 %) as obese (25.0–29.9 kg/m2), and 17 (3.0 %) as severely obese (≥30 kg/m2). As BMI increased, the relative hazard ratio (HR) decreased sharply, reaching the lowest value in the overweight group, and then rose again in the obese and severely obese. On univariate analysis, both overall survival (OS) and progression-free survival (PFS) were best in the overweight group, followed by normal > obese > severely obese > underweight groups. Multivariate analysis showed a significantly shorter survival in the underweight (OS: HR 2.90, 95 % confidence interval (CI) 1.35–6.19, P = 0.006; PFS: HR 3.08, 95 % CI 1.55–6.09, P = 0.001) and severely obese groups (OS: HR 2.93, 95 % CI 1.08–7.95, P = 0.035; PFS: HR 2.59, 95 % CI 1.06–6.36, P = 0.038). We show that being underweight or, contrary to findings in Western patients, being severely obese has a deleterious prognostic impact in DLBCL in Koreans. Revising the BMI criterion that defines obesity according to the patient’s ethnic differences could therefore better delineate DLBCL risk groups in Asian patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Visscher TL, Seidell JC (2001) The public health impact of obesity. Annu Rev Public Health 22:355–375. doi:10.1146/annurev.publhealth.22.1.355

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. BMI classification. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html. Accessed 14 May 2015

  3. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163. doi:10.1016/S0140-6736(03)15268-3

    Article  Google Scholar 

  4. Oh SW, Shin SA, Yun YH, Yoo T, Huh BY (2004) Cut-off point of BMI and obesity-related comorbidities and mortality in middle-aged Koreans. Obes Res 12:2031–2040. doi:10.1038/oby.2004.254

    Article  PubMed  Google Scholar 

  5. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578. doi:10.1016/S0140-6736(08)60269-X

    Article  PubMed  Google Scholar 

  6. Jee SH, Yun JE, Park EJ et al (2008) Body mass index and cancer risk in Korean men and women. Int J Cancer 123:1892–1896. doi:10.1002/ijc.23719

    Article  CAS  PubMed  Google Scholar 

  7. Chang ET, Hjalgrim H, Smedby KE et al (2005) Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst 97:210–218. doi:10.1093/jnci/dji012

    Article  PubMed  Google Scholar 

  8. Chiu BC, Soni L, Gapstur SM, Fought AJ, Evens AM, Weisenburger DD (2007) Obesity and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control 18:677–685. doi:10.1007/s10552-007-9013-9

    Article  PubMed  Google Scholar 

  9. Kanda J, Matsuo K, Suzuki T et al (2010) Association between obesity and the risk of malignant lymphoma in Japanese: a case-control study. Int J Cancer 126:2416–2425. doi:10.1002/ijc.24955

    CAS  PubMed  Google Scholar 

  10. Jones JA, Fayad LE, Elting LS, Rodriguez MA (2010) Body mass index and outcomes in patients receiving chemotherapy for intermediate-grade B-cell non-Hodgkin lymphoma. Leuk Lymphoma 51:1649–1657. doi:10.3109/10428194.2010.494315

    Article  PubMed  Google Scholar 

  11. Carson KR, Bartlett NL, McDonald JR et al (2012) Increased body mass index is associated with improved survival in United States veterans with diffuse large B-cell lymphoma. J Clin Oncol 30:3217–3222. doi:10.1200/JCO.2011.39.2100

    Article  PubMed Central  PubMed  Google Scholar 

  12. Park S, Han B, Cho JW et al (2014) Effect of nutritional status on survival outcome of diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Nutr Cancer 66:225–233. doi:10.1080/01635581.2014.867065

    Article  CAS  PubMed  Google Scholar 

  13. Weiss L, Melchardt T, Habringer S et al (2014) Increased body mass index is associated with improved overall survival in diffuse large B-cell lymphoma. Ann Oncol 25:171–176. doi:10.1093/annonc/mdt481

    Article  CAS  PubMed  Google Scholar 

  14. Hong F, Habermann TM, Gordon LI et al (2014) The role of body mass index in survival outcome for lymphoma patients: US intergroup experience. Ann Oncol 25:669–674. doi:10.1093/annonc/mdt594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stein H, Chan JKC, Warnke RA et al (2008) Diffuse large B-cell lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, pp 233–237

    Google Scholar 

  16. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  CAS  PubMed  Google Scholar 

  17. Lister TA, Crowther D, Sutcliffe SB et al (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 7:1630–1636

    CAS  PubMed  Google Scholar 

  18. Armitage JO, Weisenburger DD (1998) New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol 16:2780–2795

    CAS  PubMed  Google Scholar 

  19. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. doi:10.1182/blood-2003-05-1545

    Article  CAS  PubMed  Google Scholar 

  20. Hwang HS, Park CS, Yoon DH, Suh C, Huh J (2014) High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified. Am J Surg Pathol 38:1046–1057. doi:10.1097/PAS.0000000000000211

    Article  PubMed  Google Scholar 

  21. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17:1244

    CAS  PubMed  Google Scholar 

  22. Oh SW (2011) Obesity and metabolic syndrome in Korea. Diabetes Metab J 35:561–566. doi:10.4093/dmj.2011.35.6.561

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kim MK, Lee WY, Kang JH et al (2014) 2014 clinical practice guidelines for overweight and obesity in Korea. Endocrinol Metab (Seoul) 29:405–409. doi:10.3803/EnM.2014.29.4.405

    Article  Google Scholar 

  24. Kwak LW, Halpern J, Olshen RA, Horning SJ (1990) Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J Clin Oncol 8:963–977

    CAS  PubMed  Google Scholar 

  25. Lyman GH, Dale DC, Friedberg J, Crawford J, Fisher RI (2004) Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J Clin Oncol 22:4302–4311. doi:10.1200/JCO.2004.03.213

    Article  CAS  PubMed  Google Scholar 

  26. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Book  Google Scholar 

  27. Atkinson AC (1980) A note on the generalized information criterion for choice of a model. Biometrika 67:413–418

    Article  Google Scholar 

  28. Therneau TM, Grambsch PM, Fleming TR (1990) Martingale-based residuals for survival models. Biometrika 77:147–160. doi:10.1093/biomet/77.1.147

    Article  Google Scholar 

  29. Bradburn MJ, Clark TG, Love SB, Altman DG (2003) Survival analysis. Part III: multivariate data analysis—choosing a model and assessing its adequacy and fit. Br J Cancer 89:605–611. doi:10.1038/sj.bjc.6601120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lichtman MA (2010) Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15:1083–1101. doi:10.1634/theoncologist.2010-0206

    Article  PubMed Central  PubMed  Google Scholar 

  31. Murphy F, Kroll ME, Pirie K, Reeves G, Green J, Beral V (2013) Body size in relation to incidence of subtypes of haematological malignancy in the prospective Million Women Study. Br J Cancer 108:2390–2398. doi:10.1038/bjc.2013.159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Leo QJ, Ollberding NJ, Wilkens LR et al (2014) Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: the Multiethnic Cohort study. Cancer Causes Control 25:1449–1459. doi:10.1007/s10552-014-0447-6

    Article  PubMed  Google Scholar 

  33. Rodvold KA, Rushing DA, Tewksbury DA (1988) Doxorubicin clearance in the obese. J Clin Oncol 6:1321–1327

    CAS  PubMed  Google Scholar 

  34. Landgren O, Andren H, Nilsson B, Ekbom A, Bjorkholm M (2005) Risk profile and outcome in Hodgkin’s lymphoma: is obesity beneficial? Ann Oncol 16:838–840. doi:10.1093/annonc/mdi145

    Article  CAS  PubMed  Google Scholar 

  35. Sparreboom A, Wolff AC, Mathijssen RH et al (2007) Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 25:4707–4713. doi:10.1200/JCO.2007.11.2938

    Article  CAS  PubMed  Google Scholar 

  36. Muller C, Murawski N, Wiesen MH et al (2012) The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood 119:3276–3284. doi:10.1182/blood-2011-09-380949

    Article  PubMed  Google Scholar 

  37. Wong AL, Seng KY, Ong EM et al (2014) Body fat composition impacts the hematologic toxicities and pharmacokinetics of doxorubicin in Asian breast cancer patients. Breast Cancer Res Treat 144:143–152. doi:10.1007/s10549-014-2843-8

    Article  CAS  PubMed  Google Scholar 

  38. Camus V, Lanic H, Kraut J et al (2014) Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur J Haematol 93:9–18. doi:10.1111/ejh.12285

    Article  CAS  PubMed  Google Scholar 

  39. Lanic H, Kraut-Tauzia J, Modzelewski R et al (2014) Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk Lymphoma 55:817–823. doi:10.3109/10428194.2013.816421

    Article  CAS  PubMed  Google Scholar 

  40. Sarkozy C, Camus V, Tilly H, Salles G, Jardin F (2015) Body mass index and other anthropometric parameters in patients with diffuse large B-cell lymphoma: physiopathological significance and predictive value in the immunochemotherapy era. Leuk Lymphoma: 1-10. doi:10.3109/10428194.2014.979412

  41. Chang CM, Wang SS, Dave BJ et al (2011) Risk factors for non-Hodgkin lymphoma subtypes defined by histology and t(14;18) in a population-based case-control study. Int J Cancer 129:938–947. doi:10.1002/ijc.25717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kanda J, Matsuo K, Inoue M et al (2010) Association of anthropometric characteristics with the risk of malignant lymphoma and plasma cell myeloma in a Japanese population: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 19:1623–1631. doi:10.1158/1055-9965.EPI-10-0171

    Article  CAS  PubMed  Google Scholar 

  43. Patel AV, Diver WR, Teras LR, Birmann BM, Gapstur SM (2013) Body mass index, height and risk of lymphoid neoplasms in a large United States cohort. Leuk Lymphoma 54:1221–1227. doi:10.3109/10428194.2012.742523

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a grant (2015-090) from Asan Institute for Life Sciences, Seoul, Korea.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooryung Huh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

The restricted cubic spline plots according to the (a) height and (b) weight. The horizontal dotted line in the restricted cubic spline plots indicates the baseline hazard ratio (=1), and the vertical dotted line indicates the cutoff values between BMI groups. The gray-filled area indicates the 95 % confidence interval. P model indicates the P-value of the Cox regression model calculated by likelihood ratio test. (GIF 57 kb)

High resolution image (TIFF 4867 kb)

Online resource 2

Plots of Martingale residuals with smoothing curves of the Cox models applying various BMI cutoff criteria. (a) The residual plot of the ‘null’ Cox model, which did not contain the BMI category as the predictive variable. The smoothing curve exhibits a descent-ascent pattern, similar to that seen in the restricted cubic spline plot shown in Fig. 1a. (b) The residual plot of the Cox model applying the five-tiered BMI category (underweight, <18.5 kg/m2; normal weight, 18.5–22.9 kg/m2; overweight, 23.0–24.9 kg/m2; obesity, 25.0–29.9 kg/m2; and severe obesity, ≥30.0 kg/m2) as predictive variables. In contrast to the pattern shown in (a), the smoothing curve remains close to the baseline (dotted line), meaning that this model may predict the effect of BMI with a smaller chance of over- and/or underprediction. (c and d) The residual plots of Cox models applying the dichotomized BMI classifications (cutoff values, 20 kg/m2 or 25 kg/m2) show smoothing curves floating above the baseline at both extremes, meaning that these models would underpredict the effect of BMI. Abbreviations: BMI, body mass index. (GIF 141 kb)

High resolution image (TIFF 10947 kb)

Online resource 3

The Kaplan-Meier survival curve according to the (a, b, e and f) height and (c, d, g and h) weight quartile groups. The whole patients were separated into two sexual groups and individually analyzed. Note the plot (d) and (h) showing that the weight quartile 3 group was likely to show better prognosis than the other groups in female patients. However, this pattern did not displayed in male patients. (GIF 84 kb)

High resolution image (TIFF 2804 kb)

Online resource 4

(DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H.S., Yoon, D.H., Suh, C. et al. Body mass index as a prognostic factor in Asian patients treated with chemoimmunotherapy for diffuse large B cell lymphoma, not otherwise specified. Ann Hematol 94, 1655–1665 (2015). https://doi.org/10.1007/s00277-015-2438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2438-4

Keywords

Navigation