Skip to main content

Advertisement

Log in

Osteopontin: a potential biomarker of Gaucher disease

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Gaucher disease (GD) is one of the most prevalent lysosomal storage disorders and the disorder that has the greatest immune system involvement. Pathologic lipid accumulation in macrophages accounts for a small amount of the additional tissue mass in the liver and spleen. The additional increase may be related to an inflammatory response because Gaucher cells secrete inflammatory mediators. Osteopontin (OPN) is a protein identified in cancer cells and in bone cells that is produced by several types of immune cells including T-cells and macrophages. We report here elevated OPN levels in the plasma of type 1 GD patients and its sensitive response to enzyme replacement therapy. The mean OPN value of GD patients receiving ERT was similar to the values of controls and patients with other lysosomal disorders. When comparing untreated and treated GD patients, the p value was <0.001. In GD, OPN appears to be more sensitive to ERT than chitotriosidase and can be used during the follow-up of patients who are chitotriosidase deficient. Additional extended studies are required to relate variations in the OPN levels to clinical findings and response to therapy in GD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meikle PJ, Hopwood JJ (2003) Lysosomal storage disorders: emerging therapeutic options require early diagnosis. Eur J Pediatr 162(Suppl 1):S34–S37

    Article  PubMed  Google Scholar 

  2. Mistry PK, Cappellini MD, Lukina E, Ozsan H, Mach Pascual S, Rosenbaum H et al (2011) A reappraisal of Gaucher disease-diagnosis and disease management algorithms. Am J Hematol 86(1):110–115

    Article  PubMed Central  PubMed  Google Scholar 

  3. Beutler E (2006) Gaucher disease: multiple lessons from a single gene disorder. Acta Paediatr Suppl 95(451):103–109

    Article  PubMed  Google Scholar 

  4. Jmoudiak M, Futerman AH (2005) Gaucher disease: pathological mechanisms and modern management. Br J Haematol 129(2):178–188

    Article  CAS  PubMed  Google Scholar 

  5. Hughes DA, Pastores GM (2010) The pathophysiology of GD - current understanding and rationale for existing and emerging therapeutic approaches. Wien Med Wochenschr 160(23–24):594–599

    Article  PubMed  Google Scholar 

  6. Boven LA, van Meurs M, Boot RG, Mehta A, Boon L, Aerts JM et al (2004) Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 122(3):359–369

    Article  CAS  PubMed  Google Scholar 

  7. Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14(16):2387–2398

    Article  CAS  PubMed  Google Scholar 

  8. Pelled D, Trajkovic-Bodennec S, Lloyd-Evans E, Sidransky E, Schiffmann R, Futerman AH (2005) Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 18(1):83–88

    Article  CAS  PubMed  Google Scholar 

  9. Deganuto M, Pittis MG, Pines A, Dominissini S, Kelley MR, Garcia R et al (2007) Altered intracellular redox status in Gaucher disease fibroblasts and impairment of adaptive response against oxidative stress. J Cell Physiol 212(1):223–235

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Grabowski GA (2010) Impaired autophagosomes and lysosomes in neuronopathic Gaucher disease. Autophagy 6(5):648–649

    Article  PubMed  Google Scholar 

  11. Cox TM (2001) Gaucher disease: understanding the molecular pathogenesis of sphingolipidoses. J Inherit Metab Dis 24(Suppl 2):106–121, discussion 87-8

    CAS  PubMed  Google Scholar 

  12. Moran MT, Schofield JP, Hayman AR, Shi GP, Young E, Cox TM (2000) Pathologic gene expression in Gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood 96(5):1969–1978

    CAS  PubMed  Google Scholar 

  13. Hollak CE, Evers L, Aerts JM, van Oers MH (1997) Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Mol Dis 23(2):201–212

    Article  CAS  PubMed  Google Scholar 

  14. Pavlova EV, Deegan PB, Tindall J, McFarlane I, Mehta A, Hughes D et al (2011) Potential biomarkers of osteonecrosis in Gaucher disease. Blood Cells Mol Dis 46(1):27–33

    Article  CAS  PubMed  Google Scholar 

  15. Aerts JM, Hollak CE (1997) Plasma and metabolic abnormalities in Gaucher’s disease. Bailliere’s Clin Haematol 10(4):691–709

    Article  CAS  Google Scholar 

  16. Hollak CE, van Weely S, van Oers MH, Aerts JM (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Investig 93(3):1288–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Boot RG, Verhoek M, de Fost M, Hollak CE, Maas M, Bleijlevens B et al (2004) Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103(1):33–39

    Article  CAS  PubMed  Google Scholar 

  18. Dekker N, van Dussen L, Hollak CE, Overkleeft H, Scheij S, Ghauharali K et al (2011) Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 118(16):e118–e127

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rolfs A, Giese AK, Grittner U, Mascher D, Elstein D, Zimran A et al (2013) Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients. PLoS One 8(11):e79732

    Article  PubMed Central  PubMed  Google Scholar 

  20. Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996(1–2):43–48

    Article  CAS  PubMed  Google Scholar 

  21. Oldberg A, Franzen A, Heinegard D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A 83(23):8819–8823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Weber GF, Cantor H (1996) The immunology of Eta-1/osteopontin. Cytokine Growth Factor Rev 7(3):241–248

    Article  CAS  PubMed  Google Scholar 

  23. Rittling SR, Chambers AF (2004) Role of osteopontin in tumour progression. Br J Cancer 90(10):1877–1881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ramaiah SK, Rittling S (2008) Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci : Off J Soc Toxicol 103(1):4–13

    Article  CAS  Google Scholar 

  25. Atkins K, Berry JE, Zhang WZ, Harris JF, Chambers AF, Simpson RU et al (1998) Coordinate expression of OPN and associated receptors during monocyte/macrophage differentiation of HL-60 cells. J Cell Physiol 175(2):229–237

    Article  CAS  PubMed  Google Scholar 

  26. Konno S, Eckman JA, Plunkett B, Li X, Berman JS, Schroeder J et al (2006) Interleukin-10 and Th2 cytokines differentially regulate osteopontin expression in human monocytes and dendritic cells. J Interf Cytokine Res : Off J Int Soc Interferon and Cytokine Res 26(8):562–567

    Article  CAS  Google Scholar 

  27. Li X, O’Regan AW, Berman JS (2003) IFN-gamma induction of osteopontin expression in human monocytoid cells. J Interf Cytokine Res : Off J Int Soc Interferon and Cytokine Res 23(5):259–265

    Article  CAS  Google Scholar 

  28. Rollo EE, Denhardt DT (1996) Differential effects of osteopontin on the cytotoxic activity of macrophages from young and old mice. Immunology 88(4):642–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. O’Regan AW, Hayden JM, Berman JS (2000) Osteopontin augments CD3-mediated interferon-gamma and CD40 ligand expression by T cells, which results in IL-12 production from peripheral blood mononuclear cells. J Leukoc Biol 68(4):495–502

    PubMed  Google Scholar 

  30. Zheng W, Li R, Pan H, He D, Xu R, Guo TB et al (2009) Role of osteopontin in induction of monocyte chemoattractant protein 1 and macrophage inflammatory protein 1beta through the NF-kappaB and MAPK pathways in rheumatoid arthritis. Arthritis Rheum 60(7):1957–1965

    Article  CAS  PubMed  Google Scholar 

  31. Nystrom T, Duner P, Hultgardh-Nilsson A (2007) A constitutive endogenous osteopontin production is important for macrophage function and differentiation. Exp Cell Res 313(6):1149–1160

    Article  PubMed  Google Scholar 

  32. Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 152(2):353–358

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Bourassa B, Monaghan S, Rittling SR (2004) Impaired anti-tumor cytotoxicity of macrophages from osteopontin-deficient mice. Cell Immunol 227(1):1–11

    Article  CAS  PubMed  Google Scholar 

  34. Pedraza CE, Nikolcheva LG, Kaartinen MT, Barralet JE, McKee MD (2008) Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: implications for bone wound healing. Bone 43(4):708–716

    Article  CAS  PubMed  Google Scholar 

  35. Vedder AC, Cox-Brinkman J, Hollak CE, Linthorst GE, Groener JE, Helmond MT et al (2006) Plasma chitotriosidase in male Fabry patients: a marker for monitoring lipid-laden macrophages and their correction by enzyme replacement therapy. Mol Genet Metab 89(3):239–244

    Article  CAS  PubMed  Google Scholar 

  36. Dornelles AD, de Oliveira Netto CB, Vairo F, de Mari JF, Tirelli KM, Schwartz IV (2014) Breastfeeding in Gaucher disease: is enzyme replacement therapy safe? Clin Ther 36(6):990–991

    Article  PubMed  Google Scholar 

  37. Castaneda JA, Lim MJ, Cooper JD, Pearce DA (2008) Immune system irregularities in lysosomal storage disorders. Acta Neuropathol 115(2):159–174

    Article  CAS  PubMed  Google Scholar 

  38. Rittling SR (2011) Osteopontin in macrophage function. Expert Rev Mol Med 13:e15

    Article  PubMed  Google Scholar 

  39. Raghupathy R, Makhseed M, Azizieh F, Omu A, Gupta M, Farhat R (2000) Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Hum Reprod 15(3):713–718

    Article  CAS  PubMed  Google Scholar 

  40. Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB et al (2008) Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford) 47(12):1775–1779

    Article  CAS  Google Scholar 

  41. Yoshino M, Watanabe Y, Tokunaga Y, Harada E, Fujii C, Numata S et al (2007) Roles of specific cytokines in bone remodeling and hematopoiesis in Gaucher disease. Pediatr Int : Off J Jpn Pediatr Soc 49(6):959–965

    Article  CAS  Google Scholar 

  42. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19(5–6):333–345

    Article  CAS  PubMed  Google Scholar 

  43. Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF (2001) The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1(5):621–632

    Article  CAS  PubMed  Google Scholar 

  44. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H (2007) The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomark Prev: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 16(6):1087–1097

    Article  CAS  Google Scholar 

  45. Caers J, Gunthert U, De Raeve H, Van Valckenborgh E, Menu E, Van Riet I et al (2006) The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br J Haematol 132(4):469–477

    CAS  PubMed  Google Scholar 

  46. Maetzler W, Berg D, Schalamberidze N, Melms A, Schott K, Mueller JC et al (2007) Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol Dis 25(3):473–482

    Article  CAS  PubMed  Google Scholar 

  47. Maetzler W, Michelis J, Tomiuk J, Melms A, Becker C, Gasser T et al (2009) A single-nucleotide polymorphism of the osteopontin gene may contribute to a susceptibility to Lewy body disease. J Neural Transm 116(5):599–605

    Article  CAS  PubMed  Google Scholar 

  48. Sun Y, Yin XS, Guo H, Han RK, He RD, Chi LJ (2013) Elevated osteopontin levels in mild cognitive impairment and Alzheimer’s disease. Mediat Inflamm 2013:615745

    Article  Google Scholar 

  49. Siebert M, Sidransky E, Westbroek W (2014) Glucocerebrosidase is shaking up the synucleinopathies. Brain 137(Pt 5):1304–1322

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ribner A, Altarescu G, Zimran A, Elstein D (2011) Osteopontin polymorphic susceptibility factor for Parkinson’s disease among patients with Gaucher disease. Mov Disord 26(7):1341–1343

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Roberto Giugliani for his help with the patient samples and discussions; Patricia Koehler dos Santos and André Costa for their help with the analysis; Bianca Heineck for the CHIT1 molecular analysis; Pharm Maira Burin, Prof Ursula Matte, Prof. Guilherme Baldo, and Prof. Patricia Ashton-Prolla for their valuable comments on the paper.

Conflicts of interest

The authors have no conflict of interest to declare.

Details of funding

This study was supported by grants from FIPE-HCPA, the Brazilian Coordination of Improvement of Higher Education Personnel (CAPES), Programa de Apoio a Núcleos de Excelência (PRONEX) of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and unrestricted research grants from Shire.

Authors’ contribution

F. Vairo and I. Schwartz designed and performed the research, analyzed the data, and wrote the paper. F. Sperb-Ludwig, M. Wilke, K. Michellin-Tirelli, C. Netto, and E.C. Neto performed the research and analyzed the data. M. Wilke performed the research and analyzed the data. K. Michellin-Tirelli performed the research and analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Vairo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vairo, F., Sperb-Ludwig, F., Wilke, M. et al. Osteopontin: a potential biomarker of Gaucher disease. Ann Hematol 94, 1119–1125 (2015). https://doi.org/10.1007/s00277-015-2354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2354-7

Keywords

Navigation