Skip to main content

Advertisement

Log in

Calreticulin mutations in myeloproliferative neoplasms and new methodology for their detection and monitoring

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The diagnosis of the BCR-ABL-negative myeloproliferative neoplasms (MPN), namely polycythemia vera, essential thombocythemia and primary myelofibrosis has relied significantly on the detection of known causative mutations in the JAK2 or MPL genes, which account for the majority of MPN patients. However, around 30 % of patients with MPN, primarily essential thombocythemia and primary myelofibrosis, lack mutations in these two genes making it difficult to reach a confident diagnosis in these cases. The recent discovery of frameshift mutations in CALR in approximately 70 % of MPN patients lacking the JAK2 and MPL mutations offers a reliable diagnostic marker for the latter group. A review of the current literature, plus unpublished data from our laboratory, shows that 55 different CALR insertion/deletion mutations have been identified so far in MPN patients. Among these 55 variants reported to date, a 52-base pair deletion and a 5-base pair insertion are by far the most prominent representing 50 and 35 %, respectively, of all cases with CALR mutations. In this paper, we describe a high-resolution melting (HRM) analysis and a Taqman® Real-Time PCR (RQ-PCR) assay and we propose a new clinical laboratory diagnostic algorithm for CALR mutation analysis. According to this algorithm, samples can go through front-line screening with HMR or fragment analysis, followed by the newly developed RQ-PCR to both discriminate and quantify the two most common mutations in CALR gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant’Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schonegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390. doi:10.1056/NEJMoa1311347

    Article  CAS  PubMed  Google Scholar 

  2. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O’Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du MQ, Greaves M, Bowen D, Huntly BJ, Harrison CN, Cross NC, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391–2405. doi:10.1056/NEJMoa1312542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC, Milanesi C, Sant’antonio E, Bellini M, Fugazza E, Renna MC, Boveri E, Astori C, Pascutto C, Kralovics R, Cazzola M (2014) JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123(10):1544–1551. doi:10.1182/blood-2013-11-539098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chi J, Nicolaou KA, Nicolaidou V, Koumas L, Mitsidou A, Pierides C, Manoloukos M, Barbouti K, Melanthiou F, Prokopiou C, Vassiliou GS, Costeas P (2014) Calreticulin gene exon 9 frameshift mutations in patients with thrombocytosis. Leukemia 28(5):1152–1154. doi:10.1038/leu.2013.382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951. doi:10.1182/blood-2009-03-209262

    Article  CAS  PubMed  Google Scholar 

  6. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790. doi:10.1056/NEJMoa051113

    Article  CAS  PubMed  Google Scholar 

  7. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148. doi:10.1038/nature03546

    Article  CAS  PubMed  Google Scholar 

  8. Butcher CM, Hahn U, To LB, Gecz J, Wilkins EJ, Scott HS, Bardy PG, D’Andrea RJ (2008) Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia 22(4):870–873. doi:10.1038/sj.leu.2404971

    Article  CAS  PubMed  Google Scholar 

  9. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, Cuker A, Wernig G, Moore S, Galinsky I, DeAngelo DJ, Clark JJ, Lee SJ, Golub TR, Wadleigh M, Gilliland DG, Levine RL (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3(7):e270. doi:10.1371/journal.pmed.0030270

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, Sant’Antonio E, Ferretti V, Pancrazzi A, Rotunno G, Severgnini M, Pietrelli A, Astori C, Fugazza E, Pascutto C, Boveri E, Passamonti F, De Bellis G, Vannucchi A, Cazzola M (2013) Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood 121(21):4388–4395. doi:10.1182/blood-2013-02-486050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tefferi A, Skoda R, Vardiman JW (2009) Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 6(11):627–637. doi:10.1038/nrclinonc.2009.149

    Article  CAS  PubMed  Google Scholar 

  12. Levine RL (2013) Another piece of the myeloproliferative neoplasms puzzle. N Engl J Med 369(25):2451–2452. doi:10.1056/NEJMe1313643

    Article  CAS  PubMed  Google Scholar 

  13. Tefferi A, Thiele J, Vannucchi AM, Barbui T (2014) An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. doi:10.1038/leu.2014.35

    PubMed Central  Google Scholar 

  14. Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, Finke C, Ketterling RP, Hanson CA, Pardanani A, Wolanskyj AP, Maffioli M, Casalone R, Pacilli A, Vannucchi AM, Passamonti F (2014) Type 1 versus type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol. doi:10.1002/ajh.23743

    Google Scholar 

  15. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22(1):130–131, 134-138

    CAS  PubMed  Google Scholar 

  16. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245(2):154–160. doi:10.1006/abio.1996.9916

    Article  CAS  PubMed  Google Scholar 

  17. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, Belachew AA, Pancrazzi A, Wassie EA, Ketterling RP, Hanson CA, Pardanani A, Vannucchi AM (2014) CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. doi:10.1038/leu.2014.57

    PubMed Central  Google Scholar 

  18. Tefferi A, Pardanani A (2014) Genetics: CALR mutations and a new diagnostic algorithm for MPN. Nat Rev Clin Oncol 11(3):125–126. doi:10.1038/nrclinonc.2014.16

    Article  CAS  PubMed  Google Scholar 

  19. Bilbao-Sieyro C, Santana G, Moreno M, Torres L, Santana-Lopez G, Rodriguez-Medina C, Perera M, Bellosillo B, de la Iglesia S, Molero T, Gomez-Casares MT (2014) High resolution melting analysis: a rapid and accurate method to detect CALR mutations. PLoS One 9(7):e103511. doi:10.1371/journal.pone.0103511

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ihle MA, Fassunke J, Konig K, Grunewald I, Schlaak M, Kreuzberg N, Tietze L, Schildhaus HU, Buttner R, Merkelbach-Bruse S (2014) Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer 14:13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the physicians of the Haematology departments of the Nicosia General Hospital and Limassol General Hospital for their support. This research was supported by the Research Promotion Foundation, the Republic of Cyprus and the European Regional Development Fund. George Vassiliou is funded by a Wellcome Trust Senior Fellowship in Clinical Science.

Disclosures

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of equal authors’ contribution

JC and MM contributed equally to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Costeas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, J., Manoloukos, M., Pierides, C. et al. Calreticulin mutations in myeloproliferative neoplasms and new methodology for their detection and monitoring. Ann Hematol 94, 399–408 (2015). https://doi.org/10.1007/s00277-014-2232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2232-8

Keywords

Navigation