Skip to main content
Log in

The clinical characteristics and prognostic significance of MN1 gene and MN1-associated microRNA expression in adult patients with de novo acute myeloid leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

This study aimed to determine the clinical characteristics and prognostic significance of the meningioma 1 (MN1) gene and MN1-associated microRNA expression in Chinese adult de novo acute myeloid leukemia (AML) patients. The expression level of MN1, microRNA-20 (miR-20a), and microRNA-181b (miR-181b) in bone marrow mononuclear cells was measured in 158 newly diagnosed AML patients and 20 cases of normal healthy donors by real-time quantitative reverse transcriptase polymerase chain reaction. All AML patients significantly overexpressed MN1 at the level of 0.01983 (P < 0.001) compared with normal controls. High MN1 expression was associated with spleen involvement (P = 0.037), NPM1 wild type (P = 0.001), lower miR-20a expression levels (P = 0.015), and higher miR-181b expression levels (P = 0.035). MiR-20a (P = 0.029) and miR-181b (P = 0.017) overexpressed in the bone marrow cells of patients with certain subtypes of AML compared with healthy donors. High MN1 expressers had lower complete remission (CR) rates and shorter overall survival (OS) within the Southwest Oncology Group classification. In multivariable models, high MN1 expression was associated with worse CR rates (P = 0.01), relapse-free survival (RFS; P = 0.02), and OS (P = 0.02); high miR-20a expression was associated with higher CR rates (P = 0.008) and longer OS (P = 0.04), whereas high miR-181b expression was associated with lower CR rates (P = 0.03), and shorter RFS (P = 0.045) and OS (P = 0.017). High MN1 expression confers worse prognosis in Chinese adult patients with de novo AML. MN1 gene and MN1-associated microRNAs provide clinical prognosis of AML patients and may refine their molecular risk classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lekanne Deprez RH, Riegman PH, Groen NA et al (1995) Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene 10:1521–1528

    PubMed  CAS  Google Scholar 

  2. van Wely KH, Molijn AC, Buijs A et al (2003) The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene 22:699–709

    Article  PubMed  Google Scholar 

  3. Sutton AL, Zhang X, Ellison TI et al (2005) The 1,25(OH)2D3-regulated transcription factor MN1 stimulates vitamin D receptor-mediated transcription and inhibits osteoblastic cell proliferation. Mol Endocrinol 19:2234–2244

    Article  PubMed  CAS  Google Scholar 

  4. Carella C, Bonten J, Sirma S et al (2007) MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 21:1679–1690

    Article  PubMed  CAS  Google Scholar 

  5. Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  6. Heuser M, Argiropoulos B, Kuchenbauer F et al (2007) MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood 110:1639–1647

    Article  PubMed  CAS  Google Scholar 

  7. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

    Article  PubMed  CAS  Google Scholar 

  8. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  PubMed  CAS  Google Scholar 

  9. Byrd JC, Mrozek K, Dodge RK et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336

    Article  PubMed  CAS  Google Scholar 

  10. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92:2322–2333

    PubMed  CAS  Google Scholar 

  11. Slovak ML, Kopecky KJ, Cassileth PA et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    PubMed  CAS  Google Scholar 

  12. Mrozek K, Heerema NA, Bloomfield CD (2004) Cytogenetics in acute leukemia. Blood Rev 18:115–136

    Article  PubMed  Google Scholar 

  13. Heuser M, Beutel G, Krauter J et al (2006) High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 108:3898–3905

    Article  PubMed  CAS  Google Scholar 

  14. Langer C, Marcucci G, Holland KB et al (2009) Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 27:3198–3204

    Article  PubMed  CAS  Google Scholar 

  15. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  16. Saumet A, Vetter G, Bouttier M et al (2009) Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood 113:412–421

    Article  PubMed  CAS  Google Scholar 

  17. Visone R, Veronese A, Rassenti LZ et al (2011) miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood 118:3072–3079

    Article  PubMed  CAS  Google Scholar 

  18. Wang LH, Zhou CL, Zhang XW et al (2004) Prevalence and clinical significance of FLT3 internal tandem duplication mutation in acute leukemia. Zhonghua Xue Ye Xue Za Zhi 25:393–396

    PubMed  Google Scholar 

  19. Quentmeier H, Martelli MP, Dirks WG et al (2005) Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia 19:1760–1767

    Article  PubMed  CAS  Google Scholar 

  20. Gu W, Chen Z, Hu S et al (2005) Changes in expression of WT1 isoforms during induced differentiation of the NB4 cell line. Haematologica 90:403–405

    PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  22. Cheson BD, Bennett JM, Kopecky KJ et al (2003) Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21:4642–4649

    Article  PubMed  Google Scholar 

  23. Grimwade D, Walker H, Harrison G et al (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98:1312–1320

    Article  PubMed  CAS  Google Scholar 

  24. Valk PJ, Verhaak RG, Beijen MA et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  PubMed  CAS  Google Scholar 

  25. Ross ME, Mahfouz R, Onciu M et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687

    Article  PubMed  CAS  Google Scholar 

  26. Debernardi S, Skoulakis S, Molloy G et al (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21:912–916

    PubMed  CAS  Google Scholar 

  27. Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant in aid from the 831 projects of the Municipal Committee of Changzhou (no. ky201005). The authors thank the Jiangsu Institute of Hematology for support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, L., Li, M., Liu, Y. et al. The clinical characteristics and prognostic significance of MN1 gene and MN1-associated microRNA expression in adult patients with de novo acute myeloid leukemia. Ann Hematol 92, 1063–1069 (2013). https://doi.org/10.1007/s00277-013-1729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1729-x

Keywords

Navigation