Skip to main content

Advertisement

Log in

miRNAs can increase the efficiency of ex vivo platelet generation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The process of megakaryopoiesis culminates in the release of platelets, the pivotal cellular component for hemostasis and wound healing. The regulatory architecture including the modulatory role of microRNAs, which underlies megakaryocytic maturation and platelet formation, is incompletely understood, precluding the ex vivo generation of sufficient platelet numbers for transfusion medicine. We derived a highly efficient differentiation protocol to produce mature polyploid megakaryocytes and functional platelets from CD34+-hematopoietic stem and progenitor cells by comparing previously published approaches. Our megakaryocytic culture conditions using the cytokines SCF, TPO, IL-9, and IL-6 include nicotinamide and Rho-associated kinase (ROCK) inhibitor Y27632 as contextual additives. The potency of our novel megakaryocytic differentiation protocol was validated using cord blood and peripheral blood human hematopoietic stem and progenitor cells. Using this novel megakaryocytic differentiation protocol, we characterized the modulatory capacity of several miRNAs highly expressed in normal megakaryocytic cells or malignant blasts from patients with megakaryoblastic leukemia. Overexpression of candidate microRNAs was achieved by lentiviral transduction of CD34+-hematopoietic stem and progenitor cells prior to differentiation. We revealed miR-125b and miR-660 as enhancers of polyploidization, as well as platelet output of megakaryocytes. The oncogene miR-125b markedly expanded the number of megakaryocytes during in vitro culture. Conversely, the miR-23a/27a/24-2 cluster, which is highly expressed in normal megakaryocytes, blocked maturation and platelet formation. Our study on the utilization of microRNAs in conjunction with a highly efficient differentiation protocol constitutes another step towards ex vivo platelet manufacturing on a clinically relevant scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaushansky K (1995) Thrombopoietin: the primary regulator of platelet production. Blood 86(2):419–431

    PubMed  CAS  Google Scholar 

  2. Bruno S, Gunetti M, Gammaitoni L, Dane A, Cavalloni G, Sanavio F et al (2003) In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica 88(4):379–387

    PubMed  Google Scholar 

  3. Reems JA, Pineault N, Sun S (2010) In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev 24(1):33–43

    Article  PubMed  Google Scholar 

  4. Battinelli EM, Hartwig JH, Italiano JE Jr (2007) Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol 14(5):419–426

    Article  PubMed  Google Scholar 

  5. Boyer L, Robert A, Proulx C, Pineault N (2008) Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. J Immunol Methods 332(1–2):82–91

    Article  PubMed  CAS  Google Scholar 

  6. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed  CAS  Google Scholar 

  7. Ben Ami O, Pencovich N, Lotem J, Levanon D, Groner Y (2009) A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A 106(1):238–243

    Article  PubMed  CAS  Google Scholar 

  8. Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117(20):5289–5296

    Article  PubMed  CAS  Google Scholar 

  9. Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S et al (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 24(5):478–490

    Article  PubMed  CAS  Google Scholar 

  10. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14(6):843–853

    Article  PubMed  CAS  Google Scholar 

  11. Opalinska JB, Bersenev A, Zhang Z, Schmaier AA, Choi J, Yao Y et al (2010) MicroRNA expression in maturing murine megakaryocytes. Blood 116(23):e128–e138

    Article  PubMed  CAS  Google Scholar 

  12. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E et al (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10(7):788–801

    Article  PubMed  CAS  Google Scholar 

  13. Giammona LM, Fuhrken PG, Papoutsakis ET, Miller WM (2006) Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes. Br J Haematol 135(4):554–566

    Article  PubMed  CAS  Google Scholar 

  14. Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N et al (2008) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood 112(8):3164–3174

    Article  PubMed  CAS  Google Scholar 

  15. Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16(4):698–706

    Article  PubMed  CAS  Google Scholar 

  16. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D et al (2010) Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 24(15):1659–1672

    Article  PubMed  CAS  Google Scholar 

  17. Robert A, Cortin V, Garnier A, Pineault N (2012) Megakaryocyte and platelet production from human cord blood stem cells. Methods Mol Biol 788:219–247

    Article  PubMed  Google Scholar 

  18. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  19. Petzer AL, Zandstra PW, Piret JM, Eaves CJ (1996) Differential cytokine effects on primitive (CD34 + CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med 183(6):2551–2558

    Article  PubMed  CAS  Google Scholar 

  20. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339

    Article  PubMed  CAS  Google Scholar 

  21. Elagib KE, Mihaylov IS, Delehanty LL, Bullock GC, Ouma KD, Caronia JF et al (2008) Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation. Blood 112(13):4884–4894

    Article  PubMed  CAS  Google Scholar 

  22. Guerriero R, Mattia G, Testa U, Chelucci C, Macioce G, Casella I et al (2001) Stromal cell-derived factor 1alpha increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood 97(9):2587–2595

    Article  PubMed  CAS  Google Scholar 

  23. Kratz-Albers K, Scheding S, Mohle R, Buhring HJ, Baum CM, Mc Kearn JP et al (2000) Effective ex vivo generation of megakaryocytic cells from mobilized peripheral blood CD34(+) cells with stem cell factor and promegapoietin. Exp Hematol 28(3):335–346

    Article  PubMed  CAS  Google Scholar 

  24. Cortin V, Pineault N, Garnier A (2009) Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods Mol Biol 482:109–126

    Article  PubMed  CAS  Google Scholar 

  25. Panuganti S, Papoutsakis ET, Miller WM (2010) Bone marrow niche-inspired, multiphase expansion of megakaryocytic progenitors with high polyploidization potential. Cytotherapy 12(6):767–782

    Article  PubMed  CAS  Google Scholar 

  26. Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM (2009) Large generation of megakaryocytes from serum-free expanded human CD34+ cells. Biochem Biophys Res Commun 378(1):112–117

    Article  PubMed  CAS  Google Scholar 

  27. Chang Y, Aurade F, Larbret F, Zhang Y, Le Couedic JP, Momeux L et al (2007) Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 109(10):4229–4236

    Article  PubMed  CAS  Google Scholar 

  28. Bueno C, Montes R, Menendez P (2010) The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34 + HSPCs. Stem Cell Rev 6(2):215–223

    Article  PubMed  CAS  Google Scholar 

  29. De Bruyn C, Delforge A, Martiat P, Bron D (2005) Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev 14(4):415–424

    Article  PubMed  Google Scholar 

  30. Bornstein R, Garcia-Vela J, Gilsanz F, Auray C, Cales C (2001) Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation. Br J Haematol 114(2):458–465

    Article  PubMed  CAS  Google Scholar 

  31. Slayton WB, Wainman DA, Li XM, Hu Z, Jotwani A, Cogle CR et al (2005) Developmental differences in megakaryocyte maturation are determined by the microenvironment. Stem Cells 23(9):1400–1408

    Article  PubMed  Google Scholar 

  32. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103(13):5078–5083

    Article  PubMed  CAS  Google Scholar 

  33. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110

    Article  PubMed  CAS  Google Scholar 

  34. Chang Y, Bluteau D, Debili N, Vainchenker W (2007) From hematopoietic stem cells to platelets. J Thromb Haemost 5(Suppl 1):318–327

    Article  PubMed  CAS  Google Scholar 

  35. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci U S A 107(32):14235–14240

    Article  PubMed  Google Scholar 

  36. Majka M, Baj-Krzyworzeka M, Kijowski J, Reca R, Ratajczak J, Ratajczak MZ (2001) In vitro expansion of human megakaryocytes as a tool for studying megakaryocytic development and function. Platelets 12(6):325–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. Boehmer for technical assistance; J. Schoening for general lab support; Drs. K. Weber and B. Fehse for providing plasmids; Dr. Z. Li and B. Groß for critically reading the manuscript. S.E. and K.H. were supported by the Hannover Biomedical Research School. J.H.K is a fellow of the Emmy Noether-Programme from the German National Academic Foundation (KL-2374/2-1). This work was supported by grants to J.H.K. and D.R. from the German National Academic Foundation (KL-2374/1-1 and RE-2580/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Henning Klusmann.

Additional information

Stephan Emmrich and Kerstin Henke contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmrich, S., Henke, K., Hegermann, J. et al. miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol 91, 1673–1684 (2012). https://doi.org/10.1007/s00277-012-1517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1517-z

Keywords

Navigation