Skip to main content

Advertisement

Log in

Expression of dominant-negative Ikaros isoforms and associated genetic alterations in Chinese adult patients with leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Dominant-negative (DN) Ikaros isoforms, having important roles in pathogenesis of leukemia, are mainly studied in pediatric patients, but little is known about Chinese adult patients. We examined 339 Chinese adult patients with leukemia and demonstrated the different findings between our results and those in several previous studies showing that DN isoforms overexpressed in Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) and lymphoid/mixed blast crisis of chronic myelogenous leukemia. We confirmed that deletion of IKZF1 gene exons 4–7 is responsible for the generation of Ikaros 6 (Ik6). Moreover, we observed that expression of DN isoforms was dynamically consistent with BCR-ABL1 transcript levels, associated with higher incidence of relapse within 3 months or poor response to induction chemotherapy in Ph+ALL, correlated with high white blood cell, blast cells, CD34 positive cells, and delayed achieving complete hematological remission in ALL patients. In conclusion, this study provides a rationale for the integration of aberrant Ikaros isoforms, notably Ik6 and Ik10, in the evaluation of adult ALL, particularly in Ph+ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    Article  CAS  Google Scholar 

  2. Molnar A, Georgopoulos K (1994) The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 14:8292–8303

    Article  CAS  Google Scholar 

  3. Sun L, Liu A, Georgopoulos K (1996) Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15:5358–5369

    Article  CAS  Google Scholar 

  4. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5:537–549

    Article  CAS  Google Scholar 

  5. Rebollo A, Schmitt C (2003) Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol 81:171–175

    Article  CAS  Google Scholar 

  6. Iacobucci I, Lonetti A, Messa F, Cilloni D, Arruga F, Ottaviani E, Paolini S, Papayannidis C, Piccaluga PP, Giannoulia P, Soverini S, Amabile M, Poerio A, Saglio G, Pane F, Berton G, Baruzzi A, Vitale A, Chiaretti S, Perini G, Foa R, Baccarani M, Martinelli G (2008) Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 112:3847–3855

    Article  CAS  Google Scholar 

  7. Takanashi M, Yagi T, Imamura T, Tabata Y, Morimoto A, Hibi S, Ishii E, Imashuku S (2002) Expression of the Ikaros gene family in childhood acute lymphoblastic leukaemia. Br J Haematol 117:525–530

    Article  CAS  Google Scholar 

  8. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le BMM, Pui CH, Relling MV, Shurtleff SA, Downing JR (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–114

    Article  CAS  Google Scholar 

  9. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui CH, Smith M, Hunger SP, Willman CL, Downing JR (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360:470–480

    Article  CAS  Google Scholar 

  10. Kuiper RP, Waanders E, van der Velden VH, van Reijmersdal SV, Venkatachalam R, Scheijen B, Sonneveld E, van Dongen JJ, Veerman AJ, van Leeuwen FN, van Kessel AG, Hoogerbrugge PM (2010) IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 24:1258–1264

    Article  CAS  Google Scholar 

  11. Yagi T, Hibi S, Takanashi M, Kano G, Tabata Y, Imamura T, Inaba T, Morimoto A, Todo S, Imashuku S (2002) High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood 99:1350–1355

    Article  CAS  Google Scholar 

  12. Ishimaru F (2002) Expression of Ikaros isoforms in patients with acute myeloid leukemia. Blood 100(1511–1512):1512–1513

    Google Scholar 

  13. Sun L, Crotty ML, Sensel M, Sather H, Navara C, Nachman J, Steinherz PG, Gaynon PS, Seibel N, Mao C, Vassilev A, Reaman GH, Uckun FM (1999) Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 5:2112–2120

    CAS  PubMed  Google Scholar 

  14. Payne KJ, Nicolas JH, Zhu JY, Barsky LW, Crooks GM (2001) Cutting edge: predominant expression of a novel Ikaros isoform in normal human hemopoiesis. J Immunol 167:1867–1870

    Article  CAS  Google Scholar 

  15. Ruiz A, Jiang J, Kempski H, Brady HJ (2004) Overexpression of the Ikaros 6 isoform is restricted to t(4;11) acute lymphoblastic leukaemia in children and infants and has a role in B-cell survival. Br J Haematol 125:31–37

    Article  CAS  Google Scholar 

  16. Russell T, Oliver JM, Wilson BS, Tarleton CA, Winter SS, Meng X (2008) Differential expression of Ikaros isoforms in monozygotic twins with MLL-rearranged precursor-B acute lymphoblastic leukemia. J Pediatr Hematol Oncol 30:941–944

    Article  CAS  Google Scholar 

  17. Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, Sather H, Navara C, Nachman J, Steinherz PG, Gaynon PS, Seibel N, Vassilev A, Juran BD, Reaman GH, Uckun FM (1999) Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17:3753–3766

    Article  CAS  Google Scholar 

  18. Klein F, Feldhahn N, Herzog S, Sprangers M, Mooster JL, Jumaa H, Muschen M (2006) BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene 25:1118–1124

    Article  CAS  Google Scholar 

  19. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, Astolfi A, Chiaretti S, Vitale A, Messa F, Impera L, Baldazzi C, D'Addabbo P, Papayannidis C, Lonoce A, Colarossi S, Vignetti M, Piccaluga PP, Paolini S, Russo D, Pane F, Saglio G, Baccarani M, Foa R, Martinelli G (2009) Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114:2159–2167

    Article  CAS  Google Scholar 

  20. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, Ceng J (2005) A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23), p53 gene alterations and high tumorigenicity in nude mice. Haematologica 90:766–775

    CAS  PubMed  Google Scholar 

  21. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, Kang H, Liu W, Dobbin KK, Smith MA, Carroll WL, Devidas M, Bowman WP, Camitta BM, Reaman GH, Hunger SP, Downing JR, Willman CL (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115:5312–5321

    Article  CAS  Google Scholar 

  22. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000) The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495–527

    Article  CAS  Google Scholar 

  23. Nakase K, Ishimaru F, Avitahl N, Dansako H, Matsuo K, Fujii K, Sezaki N, Nakayama H, Yano T, Fukuda S, Imajoh K, Takeuchi M, Miyata A, Hara M, Yasukawa M, Takahashi I, Taguchi H, Matsue K, Nakao S, Niho Y, Takenaka K, Shinagawa K, Ikeda K, Niiya K, Harada M (2000) Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res 60:4062–4065

    CAS  PubMed  Google Scholar 

  24. Nishii K, Katayama N, Miwa H, Shikami M, Usui E, Masuya M, Araki H, Lorenzo F, Ogawa T, Kyo T, Nasu K, Shiku H, Kita K (2002) Non-DNA-binding Ikaros isoform gene expressed in adult B-precursor acute lymphoblastic leukemia. Leukemia 16:1285–1292

    Article  CAS  Google Scholar 

  25. Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, Soverini S, Vitale A, Chiaretti S, Cimino G, Papayannidis C, Paolini S, Elia L, Fazi P, Meloni G, Amadori S, Saglio G, Pane F, Baccarani M, Foa R (2009) IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 27:5202–5207

    Article  CAS  Google Scholar 

  26. Ge Z, Liu C, Bjorkholm M, Gruber A, Xu D (2006) Mitogen-activated protein kinase cascade-mediated histone H3 phosphorylation is critical for telomerase reverse transcriptase expression/telomerase activation induced by proliferation. Mol Cell Biol 26:230–237

    Article  CAS  Google Scholar 

  27. Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, Gruber A, Sjoberg J, Xu D (2007) The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 67:2626–2631

    Article  CAS  Google Scholar 

  28. Zhu Q, Liu C, Ge Z, Fang X, Zhang X, Straat K, Bjorkholm M, Xu D (2008) Lysine-specific demethylase 1 (LSD1) is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLoS One 3:e1446

    Article  Google Scholar 

  29. Zeng J, Ge Z, Wang L, Li Q, Wang N, Bjorkholm M, Jia J, Xu D (2010) The histone demethylase RBP2 is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 138:981–992

    Article  CAS  Google Scholar 

  30. Ge Z, Li W, Wang N, Liu C, Zhu Q, Bjorkholm M, Gruber A, Xu D (2010) Chromatin remodeling: recruitment of histone demethylase RBP2 by Mad1 for transcriptional repression of a Myc target gene, telomerase reverse transcriptase. FASEB J 24:579–586

    Article  CAS  Google Scholar 

  31. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, Winandy S, Viel A, Sawyer A, Ikeda T, Kingston R, Georgopoulos K (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345–355

    Article  CAS  Google Scholar 

  32. Georgopoulos K (2002) Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2:162–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jiangsu Province Key Medical Talents (RC2011077), the National Natural Science Foundation of China (30973376, 81070437), the Natural Science Foundation of Jiangsu Province (BK2009442), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry (303070158HD10), the China Postdoctoral Science Foundation (20090461134 ), special grade of the financial support from the China Postdoctoral Science Foundation (201003598), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Nanjing Municipal Bureau of Personnel (2009), the Six Great Talent Peak Plan of Jiangsu (2010-WS-024), the National Science & Technology Pillar Program (2008BAI61B01), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU (2011), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (2011).

The authors thank Dr. Dexiu Bu (Brigham and Women's Hospital, Harvard Medical School, Boston, MA) for correcting the English grammar of this manuscript.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianYong Li or Zheng Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Lin, Z., Qian, S. et al. Expression of dominant-negative Ikaros isoforms and associated genetic alterations in Chinese adult patients with leukemia. Ann Hematol 91, 1039–1049 (2012). https://doi.org/10.1007/s00277-012-1415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1415-4

Keywords

Navigation