Skip to main content

Advertisement

Log in

In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditions

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

In type 2 diabetes, the impairment of vascular repair processes and angiogenesis are due to endothelial progenitor cell (EPC) dysfunction. In this study, we established a quantitative methodology to assess EPC function by using an in vitro 5-(6)-carboxyfluorescein diacetate succinimidyl ester-labeling vessel formation assay. The EPCs were cultured in three different glucose concentrations (100, 189.5, and 295.5 mg/dl of d-glucose) representing normal control and diabetes with either good or poor glycemic control, respectively. We found that the in vitro vessel-forming capacity was impaired in EPCs cultured in high glucose concentrations compared to normal control (43.4 ± 0.8% and 34.7 ± 0.7% vs. 50.8 ± 2.1%). We further studied expression of various genes involved in vessel formation. There was a lower level of angiopoietin 1 gene expression in EPCs cultured in high glucose concentrations. The addition of recombinant angiopoietin 1 significantly increased the vessel-forming capacity of EPCs cultured in high glucose concentration (35.3 ± 2.0% to 48.8 ± 2.7%), whereas the addition of angiopoietin 2 (a competitive inhibitor of angiopoietin 1) impaired the vessel-forming capacity of EPCs cultured in normal glucose concentration (51.8 ± 1.3% to 41.3 ± 0.6%). We conclude that the in vitro vessel-forming capacity of EPCs cultured in high glucose concentration is impaired due to low levels of angiopoietin 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  PubMed  CAS  Google Scholar 

  2. Hristov M, Zernecke A, Liehn EA, Weber C (2007) Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost 98(2):274–277

    PubMed  CAS  Google Scholar 

  3. Miller-Kasprzak E, Jagodzinski PP (2007) Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp (Warsz) 55(4):247–259

    Article  CAS  Google Scholar 

  4. Ballard VL, Edelberg JM (2007) Targets for regulating angiogenesis in the aging endothelium. Expert Opin Ther Targets 11(11):1385–1399

    Article  PubMed  CAS  Google Scholar 

  5. Werner N, Nickenig G (2006) Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med 10(2):318–332

    Article  PubMed  CAS  Google Scholar 

  6. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293

    Article  PubMed  CAS  Google Scholar 

  7. Awad O, Dedkov EI, Jiao C, Bloomer S, Tomanek RJ, Schatteman GC (2006) Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler Thromb Vasc Biol 26(4):758–764

    Article  PubMed  CAS  Google Scholar 

  8. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, Kim TY, Kim JY, Kang HJ, Chae IH, Oh BH, Park YB, Kim HS (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116(15):1671–1682

    Article  PubMed  Google Scholar 

  9. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112(11):1618–1627

    Article  PubMed  Google Scholar 

  10. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197(2):496–503

    Article  PubMed  CAS  Google Scholar 

  11. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353

    Article  PubMed  CAS  Google Scholar 

  12. Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314(3):430–440

    Article  PubMed  CAS  Google Scholar 

  13. Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med 11(5):1149–1161

    Article  PubMed  CAS  Google Scholar 

  14. Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49(7):741–752

    Article  PubMed  CAS  Google Scholar 

  15. Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, Derr-Yellin E, DiMeglio LA, Haneline LS (2008) In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes 57(3):724–731

    Article  PubMed  CAS  Google Scholar 

  16. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor exhibit impaired proliferation, cells from type II diabetics adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  PubMed  Google Scholar 

  17. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ (2005) Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid Redox Signal 7(11–12):1468–1475

    Article  PubMed  CAS  Google Scholar 

  18. Churdchomjan W, Kheolamai P, Manochantr S, Tapanadechopone P, Tantrawatpan C, U-Pratya Y, Issaragrisil S (2010) Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr Disord 10:5

    Article  PubMed  Google Scholar 

  19. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  20. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56(6):1559–1568

    Article  PubMed  CAS  Google Scholar 

  21. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180

    Article  PubMed  CAS  Google Scholar 

  22. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  PubMed  CAS  Google Scholar 

  23. Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103

    Article  PubMed  CAS  Google Scholar 

  24. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108(9):1341–1348

    PubMed  CAS  Google Scholar 

  25. Cooke VG, Naik MU, Naik UP (2006) Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol 26(9):2005–2011

    Article  PubMed  CAS  Google Scholar 

  26. Lamagna C, Hodivala-Dilke KM, Imhof BA, Aurrand-Lions M (2005) Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res 65(13):5703–5710

    Article  PubMed  CAS  Google Scholar 

  27. Corada M, Zanetta L, Orsenigo F, Breviario F, Lampugnani MG, Bernasconi S, Liao F, Hicklin DJ, Bohlen P, Dejana E (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100(3):905–911

    Article  PubMed  CAS  Google Scholar 

  28. Hara T, Ishida T, Cangara HM, Hirata K (2009) Endothelial cell-selective adhesion molecule regulates albuminuria in diabetic nephropathy. Microvasc Res 77(3):348–355

    Article  PubMed  CAS  Google Scholar 

  29. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183(2):259–267

    Article  PubMed  CAS  Google Scholar 

  30. Altannavch TS, Roubalova K, Kucera P, Andel M (2004) Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res 53(1):77–82

    PubMed  CAS  Google Scholar 

  31. Adamiec-Mroczek J, Oficjalska-Mlynczak J, Misiuk-Hojlo M (2009) Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples. Cytokine 49(3):269–274

    Article  PubMed  Google Scholar 

  32. Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA (2002) Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100(7):2479–2486

    Article  PubMed  CAS  Google Scholar 

  33. Tuo QH, Zeng H, Stinnett A, Yu H, Aschner JL, Liao DF, Chen JX (2008) Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol 294(6):H2547–2557

    Article  PubMed  CAS  Google Scholar 

  34. Samuel SM, Akita Y, Paul D, Thirunavukkarasu M, Zhan L, Sudhakaran PR, Li C, Maulik N (2010) Coadministration of adenoviral vascular endothelial growth factor and angiopoietin-1 enhances vascularization and reduces ventricular remodeling in the infarcted myocardium of type 1 diabetic rats. Diabetes 59(1):51–60

    Article  PubMed  CAS  Google Scholar 

  35. Bitto A, Minutoli L, Galeano MR, Altavilla D, Polito F, Fiumara T, Calo M, Lo Cascio P, Zentilin L, Giacca M, Squadrito F (2008) Angiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increasing VEGF expression. Clin Sci (Lond) 114(12):707–718

    Article  CAS  Google Scholar 

  36. Kinnunen K, Puustjarvi T, Terasvirta M, Nurmenniemi P, Heikura T, Laidinen S, Paavonen T, Uusitalo H, Yla-Herttuala S (2009) Differences in retinal neovascular tissue and vitreous humour in patients with type 1 and type 2 diabetes. Br J Ophthalmol 93(8):1109–1115

    Article  PubMed  CAS  Google Scholar 

  37. Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12(2):125–137

    Article  PubMed  CAS  Google Scholar 

  38. Singh H, Brindle NP, Zammit VA (2010) High glucose and elevated fatty acids suppress signaling by the endothelium protective ligand angiopoietin-1. Microvasc Res 79(2):121–127

    Article  PubMed  CAS  Google Scholar 

  39. Chen JX, Stinnett A (2008) Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol 28(9):1606–1613

    Article  PubMed  CAS  Google Scholar 

  40. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448(2–3):249–253

    Article  PubMed  CAS  Google Scholar 

  41. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19(39):4549–4552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from the Thailand Research Fund (grant no. RTA 488–0007), the Commission on Higher Education (grant no. CHE-RES-RG-49), and the Siriraj Thesis Graduate Scholarship. S. Issaragrisil is a senior research scholar of Thailand Research Fund.

Disclosures

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surapol Issaragrisil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

DOCX 16 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiraritthamrong, C., Kheolamai, P., U-Pratya, Y. et al. In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditions. Ann Hematol 91, 311–320 (2012). https://doi.org/10.1007/s00277-011-1300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-011-1300-6

Keywords

Navigation