Skip to main content

Advertisement

Log in

Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only “cytogenetic remission” but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  2. Marx J (2008) Cancer biology. All in the stroma: cancer's Cosa Nostra. Science 320:38–41

    Article  PubMed  CAS  Google Scholar 

  3. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    Article  PubMed  CAS  Google Scholar 

  4. Guo X, Oshima H, Kitmura T, Taketo MM, Oshima M (2008) Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem 283:19864–19871

    Article  PubMed  CAS  Google Scholar 

  5. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357 [Erratum, Nat Genetics 2002 32:681]

    Article  PubMed  CAS  Google Scholar 

  6. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent and independent genetic alternations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    PubMed  CAS  Google Scholar 

  7. Gunsillius E, Duba HC, Petzer AL (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355:1688–1691

    Article  Google Scholar 

  8. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. New Eng J Med 351:250–259

    Article  PubMed  CAS  Google Scholar 

  9. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21:1079–1088

    PubMed  CAS  Google Scholar 

  10. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM et al (2009) Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23:664–672

    Article  PubMed  CAS  Google Scholar 

  11. Flores-Figueroa E, Arana-Trejo RM, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224

    Article  PubMed  CAS  Google Scholar 

  12. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schümann E, Thiel E, Blau IW (2007) Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 35:221–229

    Article  PubMed  CAS  Google Scholar 

  13. Czader M, Orazi A (2009) Therapy-related myeloid neoplasms. Am J Clin Pathol 132:410–425

    Article  PubMed  CAS  Google Scholar 

  14. Travis LB, Gospodarowicz M, Curtis RE et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin's disease. J Natl Cancer Inst 94:182–192

    Article  PubMed  Google Scholar 

  15. Henderson TO, Whitton J, Stovall M, Mertens AC, Mitby P, Friedman D, Strong LC, Hammond S, Neglia JP, Meadows AT, Robison L, Diller L (2007) Secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. J Natl Cancer Inst 99:300–308

    Article  PubMed  Google Scholar 

  16. Chaturvedi AK, Engels EA, Gilbert ES et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99(21):1634–1643

    Article  PubMed  Google Scholar 

  17. Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406

    Article  PubMed  CAS  Google Scholar 

  18. Thijssens KM, van Ginkel RJ, Suurmeijer AJ, Pras E, van der Graaf WT, Hollander M, Hoekstra HJ (2005) Radiation-induced sarcoma: a challenge for the surgeon. Ann Surg Oncol 12(3):237–245

    Article  PubMed  Google Scholar 

  19. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  20. Shaffer LG, Slovak ML, Campbell LJ (eds) (2009) ISCN 2009. An international system for human cytogenetic nomenclature. S. Karger, Basel

  21. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85(23):9138–9142

    Article  PubMed  CAS  Google Scholar 

  22. Yeh SP, Chang JG, Lin CL, Lo WJ, Lee CC, Lin CY, Chiu CF (2005) Mesenchymal stem cells can be easily isolated from bone marrow of patients with various hematological malignancies but the surface antigens expression may be changed after prolonged ex vivo culture. Leukemia 19:1505–1507

    Article  PubMed  CAS  Google Scholar 

  23. Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    PubMed  CAS  Google Scholar 

  24. Ramakrishnan A, Torok-Storb B (2006) The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS [redux]. Blood 108:3948–3949

    Article  CAS  Google Scholar 

  25. Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857

    Article  PubMed  CAS  Google Scholar 

  26. Taghian A, de Vathaire F, Terrier P, Le M, Auquier A, Mouriesse H, Grimaud E, Sarrazin D, Tubiana M (1991) Long-term risk of sarcoma following radiation treatment for breast cancer. Int J Radiat Oncol Biol Phys 21(2):361–367

    Article  PubMed  CAS  Google Scholar 

  27. Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG (1994) Postirradiation sarcomas. A single-institution study and review of the literature. Cancer 73(10):2653–2662

    Article  PubMed  CAS  Google Scholar 

  28. Gonin-Laurent N, Hadj-Hamou NS, Vogt N, Houdayer C, Gauthiers-Villars M, Dehainault C, Sastre-Garau X, Chevillard S, Malfoy B (2007) RB1 and TP53 pathways in radiation-induced sarcomas. Oncogene 26:6106–6112

    Article  PubMed  CAS  Google Scholar 

  29. Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socíe G, Travis LB, Horowitz MM, Witherspoon RP, Hoover RN, Sobocinski KA, Fraumeni JF Jr, Boice JD Jr (1997) Solid cancers after bone marrow transplantation. N Engl J Med 336(13):897–904

    Article  PubMed  CAS  Google Scholar 

  30. Socié G, Curtis RE, Deeg HJ et al (2000) Solid cancers after bone marrow transplantation. J Clin Oncol 18(2):348–357

    PubMed  Google Scholar 

  31. Rizzo JD, Curtis RE, Socié G et al (2009) Solid cancers after allogeneic hematopoietic cell transplantation. Blood 113(5):1175–1183

    Article  PubMed  CAS  Google Scholar 

  32. Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA, Singer S, Maki RG, Cordon-Cardo C (2007) Derivation of sarcomas from mesenchymal stem cell via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257

    Article  PubMed  CAS  Google Scholar 

  33. Tolar J, Nauta AJ, Osborn MJ et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379

    Article  PubMed  CAS  Google Scholar 

  34. Li N, Yang R, Zhang W, Dorfman H, Rao P, Gorlick R (2009) Genetically transforming human mesenchymal stem cells to sarcomas: changes in cellular phenotype and multilineage differentiation potential. Cancer 115(20):4795–4806

    Article  PubMed  CAS  Google Scholar 

  35. Rubio R, García-Castro J, Gutiérrez-Aranda I, Paramio J, Santos M, Catalina P, Leone PE, Menendez P, Rodríguez R (2010) Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res 70(10):4185–4194

    Article  PubMed  CAS  Google Scholar 

  36. Kemp K, Morse R, Sanders K, Hows J, Donaldson C (2011) Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol. doi:10.1007/s00277-010-1141-8

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the research grant from Taiwan National Science Council (NSC-96-3111-B-039-001), Department of Health, China Medical University Hospital Cancer Research of Excellence (DOH-100-TD-C-111-005), and China Medical University Hospital (DMR-95-036) All the authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Fang Chiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, SP., Lo, WJ., Lin, CL. et al. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol 91, 163–172 (2012). https://doi.org/10.1007/s00277-011-1254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-011-1254-8

Keywords

Navigation