Skip to main content

Advertisement

Log in

Leukemia stem cells

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Leukemia-initiating cells (LICs) or leukemia stem cells (LSCs) are defined by their ability to form tumors after xenotransplantation in immunodeficient mice and appear to be rare in most human leukemias. In various leukemias, only small subpopulations of cells can transfer disease upon transplantation into immunocompromised NOD/SCID mice, and markers that distinguish the leukemogenic cancer cells from the bulk populations of non-leukemogenic cells have been identified. However, the phenotype of LICs is heterogeneous: it is variable for the different types of acute myeloid leukemias; cells with different membrane phenotype can act as LICs in each B-acute lymphoid leukemia; LICs change during the evolution of chronic myeloid leukemia from the chronic to the acute phase. There is a general consensus that the identification and characterization of leukemic stem cells might lead to the identification of new therapeutic targets and, through this way, to more effective treatments by focusing therapy on the most malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka T, Kitamura F, Nagasaka Y, Kuida K, Suwa H, Miyasaka M (1993) Selective long-term elimination of natural killer cells in vivo by an anti-interleukin 2 receptor beta chain monoclonal antibody in mice. J Exp Med 178:1103–1107

    Article  CAS  PubMed  Google Scholar 

  3. Kollet O, Pelled A, Byk T (2000) Beta2 microglobulin-deficient (β2m(null)) NOD/SCID mice are excellent recipient for studying human stem cell function. Blood 95:3102–3105

    CAS  PubMed  Google Scholar 

  4. Mazurier F, Doedens M, Gan OI, Dick JE (2003) Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nature Medicine 9:959–963

    Article  CAS  PubMed  Google Scholar 

  5. Ito M, Hiramatsu H, Kobayashi K (2002) NOD/SCID/gamma null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  CAS  PubMed  Google Scholar 

  6. Notta F, Doulatov S, Dick JE (2010) Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood 115:3704–3707

    Article  CAS  PubMed  Google Scholar 

  7. McDermott SP, Eppert K, Lechman E, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between compromised mouse strains. Blood 116:193–200

    Google Scholar 

  8. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Nat Acad Sci USA 94:5320–5325

    Article  CAS  PubMed  Google Scholar 

  9. Civin CI, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LW, Zanjiani ED (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88:4102–4109

    CAS  PubMed  Google Scholar 

  10. Hogan CJ, Shpall EJ, Keller G (2002) Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA 99:413–418

    Article  CAS  PubMed  Google Scholar 

  11. McKenzie JL, Gan OI, Doedens M, Wang JC, Diock JE (2006) Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 7:1225–1233

    Article  CAS  PubMed  Google Scholar 

  12. Wang I, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y (2003) SCID-repopulating cell activity of human cord blood-derived CD34 cells assured by intra-bone marrow injection. Blood 101:2924–2931

    Article  CAS  PubMed  Google Scholar 

  13. Kitamura T, Asada R, Wang J, Kimura T, Morioka M, Matsui K (2007) Identification of long-term repopulating potential of human cord blood-derived CD34flt3 severe combined immunodeficiency-repopulating cells by intra-bone marrow injection. Stem Cells 25:1348–1355

    Article  CAS  Google Scholar 

  14. Kitamura T, Matsuoka Y, Kimura T, Takahashi M, Nakamoto T, Yosuda K, Matsui K (2010) In vivo dynamic of human cord-blood derived CD34 SCID-repopulating cells using intra-bone marrow injection. Leukemia 24:162–168

    Article  Google Scholar 

  15. Benviste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove N (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58

    Article  CAS  Google Scholar 

  16. Dykstra B, Kent D, Bowie M, McCoffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229

    Article  CAS  PubMed  Google Scholar 

  17. Challen GA, Boles NC, Chanebers SM, Goodell MA (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6:265–278

    Article  CAS  PubMed  Google Scholar 

  18. Omatsu Y, Sugiyama T, Kohgara H, Kondoh G, Fuji N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity (in press)

  19. Himburg HA, Muramoto GG, Daher P, Maedows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, Chute JP (2010) Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 16:475–482

    Article  CAS  PubMed  Google Scholar 

  20. Mohyeldin A, Garzom-Muvdi T, Quinones-Hirojsa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  CAS  PubMed  Google Scholar 

  21. Grassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK (2010) Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biological potential. Blood 116:3185–3196

    Google Scholar 

  22. Winkler IG, Barbier V, Wadley R, Zannettino A, Williams S, Levesque JP (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116:375–385

    Article  CAS  PubMed  Google Scholar 

  23. Simsek T, Kocabas F, Zheng J, DeBernardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390

    Article  CAS  PubMed  Google Scholar 

  24. Takubo K, Goda N, Yamada W, Iruchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402

    Article  CAS  PubMed  Google Scholar 

  25. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128

    Article  CAS  PubMed  Google Scholar 

  26. Mohrin M, Bomke E, Alexander D, Wan MR, Barry-Holson K, Le Beau M, Morrison CG, Passegué E (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7:174–185

    Article  CAS  PubMed  Google Scholar 

  27. Kawamoto H, Wada H, Katsura Y (2010) A revised scheme for developmental pathways of hematopoietic cells: the myeloid-based model. Int Immunol 22:65–70

    Article  CAS  PubMed  Google Scholar 

  28. Doulatov S, Notta F, Eppert K, Nguyen LT, Ohoshi S, Dick JE (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature Immunol 11:585–593

    Article  CAS  Google Scholar 

  29. Di Santo JP (2010) A guardian of T cell fate. Science 329:44–45

    Article  PubMed  Google Scholar 

  30. Sanz E, Munez N, Monserrat J, Van-Den-Rim A, Escoll P, Ranz I, Alvarez-Mon M, de-la-Hera A (2010) Ordering human CD34+CD10CD19+ pre/proB and CD19 common lymphoid progenitor stages in two pro-B-cell development pathways. Proc Natl Acad Sci USA 107:5925–5930

    Article  CAS  PubMed  Google Scholar 

  31. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukemia after transplantation in SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  32. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  33. Ailles LE, Gerhard B, Kawagoe H, Hogge DE (1999) Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 94:1761–1772

    CAS  PubMed  Google Scholar 

  34. Rombouts WJ, Martens AC, Ploemacher RE (2000) Identification of variables determining the engraftment potential of human acute myeloid leukemia in the human NOD/SCID human chimera model. Leukemia 14:889–897

    Article  CAS  PubMed  Google Scholar 

  35. Hope KJ, Jin L, Dick SE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol 5:738–743

    Article  CAS  Google Scholar 

  36. Taussig DC, Miraki-Moud F, Anjos-Alsonso F, Pearce DJ, Allen K, Ridler C, Lillington D, Bonnet D (2008) Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112:568–575

    Article  CAS  PubMed  Google Scholar 

  37. Taussig DC, Vargaftig J, Miraki-Maud F, Griessinger E, Sharrock K, Luke T, Lillington D, Bonnet D (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34 fraction. Blood 115:1976–1984

    Article  CAS  PubMed  Google Scholar 

  38. Martelli AP, Pettirossi V, Thiede C, Bonifacio E, Mezzaroma F, Cecchini D, Martelli MF, Falini B (2010) CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 116:3907–3922

    Google Scholar 

  39. Oancea C, Ruster B, Henschler R, Puccetti E, Ruthard M (2010) The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 24:1910–1919

    Google Scholar 

  40. Westervelt P, Lane AA, Pollock JL, Oldtather K, Holt MS, Simonjic DB (2003) High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 102:1857–1865

    Article  CAS  PubMed  Google Scholar 

  41. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesmeck JL, Fabian A, Gilliland DG (2009) PML-RARα initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 23:1462–1471

    Article  CAS  PubMed  Google Scholar 

  42. Guibal FC, Alberich-Jorda M, Hirai H, Ebzalidze A, Lavantini E, Di Ruscio A, Zhang P, Santana-Lemos B, Neuberg D, Wagers A, Rego E, Tenen DG (2009) Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 114:5415–5425

    Article  CAS  PubMed  Google Scholar 

  43. Oancea C, Ruster B, Roos J, Ali Mian A, Micheilis T, Held H, Dubey A, Serve H, Henschler R, Ruthard M (2009) T(15;17)-PML-RAR-induced leukemogenesis: long-term repopulating hematopoietic stem cells as the initial target and more mature progenitors as the potential targets for final leukemic transformation. Blood ASH Meeting Abstracts 114: abstr 3980

  44. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler C, Preudhomme C, Young BD, Rohatiner AZ, Lister TA, Bonnet D (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107:1166–1173

    Article  CAS  PubMed  Google Scholar 

  45. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE (2003) Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2 microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 17:760–763

    Article  CAS  PubMed  Google Scholar 

  46. Ishikawa F, Yoshida S, Saito Y (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone marrow endosteal region. Nature Biotechnol 25:1315–1321

    Article  CAS  Google Scholar 

  47. Sanchez PV, Perry RL, Sarry JE, Perl DE, Murphy K, Swider CR, Bagg A, Choi JK, Biegel JA, Danet-Demoyers D, Carroll M (2009) A robust xenotransplantation model for acute myeloid leukemia. Leukemia 23:2109–2117

    Article  CAS  PubMed  Google Scholar 

  48. Nicolini FE, Cshman JD, Hogge DE, Humphries RK, Eaves CJ (2004) NOD/SCXID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 18:341–347

    Article  CAS  PubMed  Google Scholar 

  49. Wunderlich M, Chou FS, Link KA, Mirukawa B, Perry RL, Carroll M, Mulloy JC (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia (in press)

  50. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y (2003) Interaction between leukemic cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nature Med 9:1158–1165

    Article  CAS  PubMed  Google Scholar 

  51. Krause DS, Lazarides K, von Adrian VH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nature Med 12:1175–1180

    Article  CAS  PubMed  Google Scholar 

  52. Jin L, Hope KJ, Zhai Q, Smadjia-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  53. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE (2004) Relation between CXCR4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104:550–557

    Article  CAS  PubMed  Google Scholar 

  54. Spoo AC, Lubbert M, Wierda WG, Burger JA (2007) CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 109:786–791

    Article  CAS  PubMed  Google Scholar 

  55. Sipkins DA, Wie X, Wu JW, Runnels JM, Coté D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature 435:969–973

    Article  CAS  PubMed  Google Scholar 

  56. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865

    Article  CAS  PubMed  Google Scholar 

  57. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, Latagliata R, Mariani G, Rossini A, Battistini A, Lo-Coco F, Peschle C (2002) Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 100:2980–2988

    Article  CAS  PubMed  Google Scholar 

  58. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillip GL (2000) The interleukin-3 receptor alpha is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    Article  CAS  PubMed  Google Scholar 

  59. Graf M, Hecht K, Reif S, Pelka-Fleischer R, Pfister K, Schmetzer H (2004) Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies. Eur J Haematol 72:89–106

    Article  CAS  PubMed  Google Scholar 

  60. Vazn Thenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, Ossenkoppele GJ, Schuurhuis GJ (2007) Aberrant marker expression patterns on the CD34+CD38-stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia 21:1700–1707

    Article  CAS  Google Scholar 

  61. Jin L, Lee EM, Ramshaw HS, Busflield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gering DP, Vairo G, Lopez AF, Dick JE, Lock RB (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5:31–42

    Article  CAS  PubMed  Google Scholar 

  62. Frankel AE, Ramage J, Kiser M, Alexander R, Kucera G, Miller MS (2000) Characterization of diphteria fusion proteins targeted to the human interleukin-3 receptor. Protein Engineering 13:575–581

    Article  CAS  PubMed  Google Scholar 

  63. Testa U, Riccioni R, Biffoni M, Diverio D, Lo-Coco F, Foà R, Peschle C, Frankel AE (2005) Diphteria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 receptor expression. Blood 106:2527–2529

    Article  CAS  PubMed  Google Scholar 

  64. Du X, Ho M, Pasrtan I (2007) New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. J of Immunotherapy 30:607–613

    Article  CAS  Google Scholar 

  65. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  CAS  PubMed  Google Scholar 

  66. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

    Article  CAS  PubMed  Google Scholar 

  67. Jawad M, Seedhouse C, Mony U, Grundy M, Rimel NH, Pallis M (2010) Analysis of factors that affect in vitro chemosensitivity of leukemic stem and progenitor cells to gentuzumab ozogamicin (Mylotarg) in acute myeloid leukemia. Leukemia 24:74–80

    Article  CAS  PubMed  Google Scholar 

  68. Hosen N, Park C, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA 104:11008–11013

    Article  CAS  PubMed  Google Scholar 

  69. Becker H, Marcucci G, Mahamy K, Radmacher MD, Mrozek K, Margeson D, Whitman SP, Paschka P, Holland KB, Schwind S, Wu YZ, Powell BL, Carter TH, Kolitz J, Wetzler M, Carroll A, Baer M, Moore J, Caliguri M, Larson R, Bloomfield C (2010) Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. Blood 116:788–792

    Google Scholar 

  70. Koever W, Zhao X, Singh S, Pardoux C, Zhao J, Guzman ML, Sen S, Yonkovich S, Liu S, Zhan X, Tomasevic N, Zhou C, Gros D, Jordan CT, Gotlib J, His ED, Abo A (2009) Monoclonal antibodies against IREM-1: potential for targeted therapy of AML. Leukemia 23:1587–1597

    Article  CAS  Google Scholar 

  71. Van Rhenen A, Van Dongen A, Kelder A, Rombouts E, Feller N, Moshaver B, Van Walsum MS, Zweegam S, Ossenkoppele GJ, Schuurhuis GJ (2007) The novel AML stem cell-associated CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110:2659–2666

    Article  PubMed  CAS  Google Scholar 

  72. Moshaver B, Van Rhenen A, Kelder A, Van der Pol M, Trewijn M, Bachas C, Westra A, Ossenkoppele G, Zweegman S, Schuurhuis GJ (2008) Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells 26:3059–3067

    Article  PubMed  Google Scholar 

  73. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murosawa M, Najima Y, Takagi S, Ishikawa F (2010) Induction of cell-cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotechnol 28:275–281

    CAS  Google Scholar 

  74. Konuma T, Oguro H, Iwama A (2010) Role of the polycomb group proteins in hematopoietic stem cells. Develop Growth Differ 52:505–516

    Article  CAS  Google Scholar 

  75. Lessard J, Sauvegeau G (2003) BMI-1 determines the proliferative capacity of normal and leukemic stem cells. Nature 423:255–260

    Article  CAS  PubMed  Google Scholar 

  76. Rizo A, Olthof S, Vellenga E, Haan G, Schuringa J (2009) Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood 114:1498–1505

    Article  CAS  PubMed  Google Scholar 

  77. Majeti R, Becker MW, Tian Q, Lee T, Yan X, Liu R, Chiang JH, Hool L, Clarke MF, Weissman IL (2009) Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 106:3396–3401

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Kristov A, Sinha A, North T, Goessling W, Feng Z, Zon L, Armstrong S (2010) The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–1653

    Article  CAS  PubMed  Google Scholar 

  79. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) PTEN dependence distinguishes hematopoietic stem cells from leukemia-initiating cells. Nature 441:475–482

    Article  CAS  PubMed  Google Scholar 

  80. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-KB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    Article  CAS  PubMed  Google Scholar 

  81. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4227–4235

    Google Scholar 

  82. Griessinger E, Imbert V, Lagadec P, Gonthier N, Dubruil P, Romanelli A, Draeno M, Peyron JF (2007) AS602868, a dual inhibitor of IKK2 and FLT3 to target AML cells. Leukemia 21:877–885

    CAS  PubMed  Google Scholar 

  83. Guzman ML, Swiderski C, Howard DS, Grimes BA, Rossi RM, Szilvassy S, Jordan CT (2002) Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99:16220–16225

    Article  CAS  PubMed  Google Scholar 

  84. Guzman ML, Rossi RM, Kamischly L, Li X, Peterson D, Howard D, Jordan CT (2005) The sequiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  CAS  PubMed  Google Scholar 

  85. Kim YR, Eom J, Kim SJ, Jeung HK, Cheong JW, Kim JS, Min YH (2010) Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Ex Ther (in press)

  86. Riccioni R, Senese M, Diverio D, Riti V, Buffolino S, Mariani G, Boe A, Cedrone M, Lo-Coco F, Foà R, Peschle C, Testa U (2007) M4 and M5 acute myeloid leukemias display a high sensitivity to bortezomib-mediated apoptosis. Br J Haematol 139:194–205

    Article  CAS  PubMed  Google Scholar 

  87. Colado E, Alvarez-Fernandez S, Maiso P, Martin-Sanchez J, Vidriales MB, Garayoa M, Ocio EM, Montero JC, Pandiella A, San Miguel JF (2008) The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype. Haematologica 93:57–66

    Article  CAS  PubMed  Google Scholar 

  88. Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, Sun X, Wu Y, Zhan J, Pan J (2010) Antineoplastic mechanisms of nicosolamide in acute myelogenous leukemia stem cells: inactivation of the NF-KB pathway and generation of reactive oxygen species. Cancer Res 70:2516–2527

    Article  CAS  PubMed  Google Scholar 

  89. Fuchs O (2010) Transcription factor NF-KB inhibitors as a single therapeutic agent or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Curr Mol Phamacol 3:98–122

    Google Scholar 

  90. Nilsson L, Astrand-Grundstrom I, Arvidsson I, Jacobson B, Hellstrom-Lindberg E, Hast R, Jacobsen E (2000) Isolation and characterization of hematopoietic progenitor/stem cells in 5q deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 96:2012–2021

    CAS  PubMed  Google Scholar 

  91. Nilsson L, Eden P, Olsson E, Mansson R, Astrand-Grundstrom I, Strombeck B, Theilgaard-Monch K, Anderson K, Hast R, Hellstrom-Lindeberg E, Samuelsson J, Bergh G, Nerlov C, Johansson B, Sigvardsson M, Boeg A, Jacobsen SE (2007) The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 110:3005–3014

    Article  CAS  PubMed  Google Scholar 

  92. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG, Jadersten M, Killick S, Verma A, Norbury CJ, Hellstrom-Lindeberg E, Wainscoat JS, Boultwood J (2010) Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 24:756–764

    Article  CAS  PubMed  Google Scholar 

  93. Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T, Mead AJ, Astrand-Grundstrom I, Strombeck B, Horvat A, Ferry H, Dhanda RS, Hast R, Ryden T, Vyas P, Gohring G, Sclegelberger B, Johansson B, Hellsstrom-Lindeberg E, List A, Nilsson L, Jacobsen SE (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 363:1025–1037

    Article  CAS  PubMed  Google Scholar 

  94. Nilsson L, Astrand-Grundstrom I, Anderson K, Hokland P, Bryder D, Kjeldsen L, Johansson B, Hellstrom-Lindberg E, Hast R, Jacobsen SE (2002) Involvement and functional impairment of the CD34+CD38CD90+ hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 100:259–267

    CAS  PubMed  Google Scholar 

  95. Xie W, Wang X, Du W, Qin X, Huang S (2010) Detection of molecular targets on the surface of CD34+CD38 bone marrow cells in myelodysplastic syndromes. Cytometry 77A:840–848

    Article  Google Scholar 

  96. Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C (2004) Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103:4285–4293

    Article  CAS  PubMed  Google Scholar 

  97. Kerbauy DM, Lesnikov V, Torok-Storb B, Bryant E, Deeg HJ (2004) Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood 104:2202–2203

    Article  CAS  PubMed  Google Scholar 

  98. Martin MG, Welch JS, Uy GL, Fehniger TA, Kulkarni S, Duncavage EJ, Walter MJ (2010) Limited engraftment of low-risk myelodysplastic syndrome cells in NOD/SCID gamma-C chain knockout mice. Leukemia 24:1662–1664

    Article  CAS  PubMed  Google Scholar 

  99. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sauz R, Gonzales M (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95:1007–1013

    CAS  PubMed  Google Scholar 

  100. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–637

    Article  CAS  PubMed  Google Scholar 

  101. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Greaves M, Enver T (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319:336–339

    Article  CAS  PubMed  Google Scholar 

  102. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A (2009) Expression of CD133 on leukemia-initiating cells in childhood leukemia. Blood 113:3287–3296

    Article  CAS  PubMed  Google Scholar 

  103. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A (2004) Characterization of acute lymphoblastic progenitor cells. Blood 104:2919–2925

    Article  CAS  PubMed  Google Scholar 

  104. Le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Scrauder A (2008) In childhood acute lymphoblastic leukemia blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14:47–58

    Article  PubMed  CAS  Google Scholar 

  105. Morisot S, Wayne AS, Bohana-Kashtan O, Kaplan IM, Hildreth R, Brown P (2008) Leukemia stem cells (LSCs) are frequent in childhood precursor B acute lymphoblastic leukemia (ALL). Blood 112:1354–1360

    Google Scholar 

  106. Vormoor HJ (2009) Malignant stem cells in childhood acute lymphoblastic leukemia: the stem cell concept revisited. Cell Cycle 28:8–11

    Google Scholar 

  107. Kong Y, Yoshida S, Saito Y, Doi T, Nagatashi Y, Fukata M, Saito N, Yang SM, Iwamoto C, Okamura J, Liu KY, Huang XJ, Lu DP, Shultz LD, Harada M, Ishikawa F (2008) CD34+CD38+CD19+ as well as CD34+CD38CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 22:1207–1213

    Article  CAS  PubMed  Google Scholar 

  108. Hotfilder M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R, Jurgens H, Harbott J, Vormoor J (2005) Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19 cells. Cancer Res 65:1442–1449

    Article  CAS  PubMed  Google Scholar 

  109. Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukemia. Nature Rev Cancer 3:639–649

    Article  CAS  Google Scholar 

  110. Ford AM, Palmi C, Bueno C, Hong D, Cordes P, Knight D, Cazzaniga G, Ener T, Greaves M (2009) The TEL-AML1 leukemia fusion gene dysregulates the TGF-β pathway in early B lineage progenitor cells. J Clin Invet 119:826–836

    CAS  Google Scholar 

  111. Menendez P, Catalina P, Rodriguez R, Melen GJ, Bueno C, Arriero M, Garcia-Sanchez F, Lassaletta A, Garcia-Sanzo R, Garcia-Castro J (2009) Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 206:3131–3141

    Article  CAS  PubMed  Google Scholar 

  112. Lullinghan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Mia J, Pounds SB, Su X, Pul CH, Relling MV, Evans WE, Shurtleff SA, Downing JR (2007) Genome-wide variation analysis of genetic alterations in acute lymphoblastic leukemia. Nature 446:758–764

    Article  CAS  Google Scholar 

  113. Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO, Bhakta M, Gratias EJ, Van Wering ER, Cazzaniga G, Harrison CJ, Hain R, Anciff P, Ford AM, Kearney L, Greaves M (2010) Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115:3553–3558

    Article  CAS  PubMed  Google Scholar 

  114. Greaves M (2009) Darwin and evolutionary tales in leukemia. Hematology :3–12

  115. Greaves M (2010) Cancer stem cells: back to Darwin? Semin Cancer Biol 20:65–70

    Article  PubMed  Google Scholar 

  116. Ford AM, Palmi C, Bueno C, Hong D, Cordas P, Knight D, Cazzaniga G, Ener T, Greaves M (2009) The TEL-AML1 leukemia fusion gene dysregulates the TGF-β pathway in early B lineage progenitor cells. J Clin Invest 119:826–836

    CAS  PubMed  Google Scholar 

  117. Cox C, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109:674–682

    Article  CAS  PubMed  Google Scholar 

  118. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y, Yeh JE, Iruela-ARispe ML, Varella-Garcia M, Wu H (2008) Multi-genetic events collaboratively contribute to PTEN-null leukemia stem-cell formation. Nature 453:529–535

    Article  CAS  PubMed  Google Scholar 

  119. McCormack MP, Young LF, Vasudevan S, De Graaf CA, Codrington R, Rabbitts TH, Jane SM, Curtis DJ (2010) The LMO2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327:879–883

    Article  CAS  PubMed  Google Scholar 

  120. Tremblay M, Tremblay C, Herblot S, Aplan PD, Hébert J, Perreault C, Hoang T (2010) Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24:1093–1105

    Article  CAS  PubMed  Google Scholar 

  121. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi S, Pei D, Cheng C, Su X, Rubnitz JE, Basso G, Boindi A, Pui CH, Downing JR, Campana D (2009) Early T-cell precursor leukemia: a subtype of very high-risk acute lymphoblastic leukemia. Lancet oncology 10:147–156

    Article  CAS  PubMed  Google Scholar 

  122. Belkl JJ, Bhandoola A (2008) The earliest thymic progenitors for T-cell possess myeloid lineage potential. Nature 452:764–767

    Article  CAS  Google Scholar 

  123. Wada H, Masuda K, Satoh R (2008) T-cell progenitors retain myeloid potential. Nature 452:768–772

    Article  CAS  PubMed  Google Scholar 

  124. Chiang MY, Shestova O, Histen G, L’Heureux S, Romany C, Childs ME, Gimotty PA, Aster JC, Pear WS (2008) Leukemia-associated NTCH1 alleles are weak tumor initiators but accelerates K-Ras-initiated leukemia. J Clin Invet 118:3181–3194

    Article  CAS  Google Scholar 

  125. Moellering R, Cornejo M, Davis T, Del Bianco C, Aster J, Blalow S, Kung A, Gilliland G, Verdine G, Bradner J (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    Article  CAS  PubMed  Google Scholar 

  126. Wu Y, Cain-Hom C, Hagenbeek TJ, De Leon G, Chen Y, Finkle D (2010) Therapeutic antibody targeting of individual NOTCH receptors. Nature 464:1052–1057

    Article  CAS  PubMed  Google Scholar 

  127. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    CAS  PubMed  Google Scholar 

  128. Eisterer W, Jiang X, Christ O, Glimm H, Pang E, Lambie K, Shaw G, Holyake TL, Petzer AL, Auewarakul C, Barnett MJ, Eaves CJ, Eaves AC (2005) Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 19:435–441

    Article  CAS  PubMed  Google Scholar 

  129. Graham SM, Vass JK, Holyoake TL, Graham GJ (2007) Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells 25:3111–3120

    Article  CAS  PubMed  Google Scholar 

  130. Jorgensen HG, Holyoake TL (2007) Characterization of cancer stem cells in chronic myeloid leukemia. Biochem Soc Trans 45(pt5):730–737

    Google Scholar 

  131. Hu Y, Swerdlow S, Dufly TM, Weinman R, Lee FY, Li S (2006) Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 103:16870–16875

    Article  CAS  PubMed  Google Scholar 

  132. Jamieson CH, Ailles LE, Dylla SJ (2004) Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  CAS  PubMed  Google Scholar 

  133. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC (2008) BCR-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 105:17967–17972

    Article  CAS  PubMed  Google Scholar 

  134. Lemoli RM, Salvestrini V, Bianchi E, Bertolini F, Fogli M, Amabile M, Tafiuri A, Salati S, Zini R, Testoni N, Rabascio C, Rossi L, Martin-Padura I, Castagnetti F, Marighetti P, Martinelli G, Baccarani M, Ferrari S, Manfredini R (2009) Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34 cell population with intrinsic resistance to imatinib. Blood 114:5191–5200

    Article  CAS  PubMed  Google Scholar 

  135. Jaras M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M, Lassen C, Olofsson T, Bjerrum OW, Richter J, Fioretos T (2010) Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci USA 107:16820–16825

    Google Scholar 

  136. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    Article  CAS  PubMed  Google Scholar 

  137. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107:4532–4539

    Article  CAS  PubMed  Google Scholar 

  138. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent antiproliferative effects of imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109:4016–4019

    Article  CAS  PubMed  Google Scholar 

  139. Michor F, Hughes TP, Iwasa Y (2005) Dynamics of chronic myeloid leukemia. Nature 435:1267–1270

    Article  CAS  PubMed  Google Scholar 

  140. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935

    CAS  PubMed  Google Scholar 

  141. Jiang X, Forrest D, Nicolini F, Turhan A, Guilbot J, Yip C, Holyonke T, Jorgensen H, Lambie K, Saw KM, Pang E, Vukovic R, Lehn P, Ringross A, Yu M, Brinkman RR, Smith C, Eaves A, Eaves C (2010) Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood 116:2112–2121

    Google Scholar 

  142. Hu Y, Chen Y, Douglas L, Li S (2009) Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23:109–116

    Article  CAS  PubMed  Google Scholar 

  143. Zhao C, Blum J, Chan A, Zwon HY, Jung SH, Cook JM (2007) Loss of beta-catenin supports the renewal of normal and CML stem cells in vivo. Cancer Cell 12:528–541

    Article  CAS  PubMed  Google Scholar 

  144. Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin AG, Li S (2010) PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood 115:626–635

    Article  CAS  PubMed  Google Scholar 

  145. Sobrinho-Simoes M, Wilczek V, Score J, Cross N, Apperley J, Melo J (2010) In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood 116:1329–1335

    Article  CAS  PubMed  Google Scholar 

  146. Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS (2005) Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:324–334

    Article  CAS  PubMed  Google Scholar 

  147. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T, Gothert JR, Stehling M, Wagers A, Huettner CS, Tenen DG, Tickenbrock L, Berdel WE, Serve H, Hoylake TL, Muller-Tidow C, Koschmieder S (2010) BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 115:3185–3195

    Article  CAS  PubMed  Google Scholar 

  148. Naka K, Hoshii T, Maraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-β-FOXO signaling maintains leukemia-initiating cells in chronic myeloid leukemia. Nature 463:676–680

    Article  CAS  PubMed  Google Scholar 

  149. Dierks C, Beigi R, Guo GR, Zirlik K, Manley P (2008) Expansion of BCR-ABL-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  CAS  PubMed  Google Scholar 

  150. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahansson A, Blun J, Kwon HY, Kim J, Chute JP, Rizzieri D, Monchof M, VanArsdal T, Beachy PA, Key AT (2009) Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukemia. Nature 458:776–779

    Article  CAS  PubMed  Google Scholar 

  151. Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH, Kharas MG, Miller PG, Cornejo MG, Okabe R, Armstrong SA, Ghilardi N, Gould S, De Sauvage FJ, McMahon AP, Gilliland DG (2009) Hedgehog signaling is dispensable for adult murine hetopoietic stem cell function and hematopoiesis. Cell Stem Cell 4:559–567

    Article  CAS  PubMed  Google Scholar 

  152. Chen Y, Hu Y, Zhang H, Peng C, Li S (2009) Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics 41:783–792

    Article  CAS  PubMed  Google Scholar 

  153. Graham SM, Vass JK, Holyoake TL, Graham GJ (2007) Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells 25:3111–3120

    Article  CAS  PubMed  Google Scholar 

  154. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Fedelstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukemia-initiating cells. Nature 453:1072–1078

    Article  CAS  PubMed  Google Scholar 

  155. Jiang X, Zhao Y, Chan W, Vercauteren S, Pang E, Kennedy S, Nicolini F, Eaves A, Eaves C (2004) Deregulated expression in Ph+ human leukemias of AHI-1, a gene activated by insertional mutagenesis in mouse models of leukemia. Blood 103:3897–3904

    Article  CAS  PubMed  Google Scholar 

  156. Zhou LL, Zhao Y, Ringrose A, DeGeer D, Kennah E, Lin A, Sheng G, Li XJ, Turhan A, Jiang X (2008) AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. J Exp Med 205:2557–2671

    Google Scholar 

  157. DeGeer D, Newmarch K, Zhou L, Chen M, Saw MS, Turhan AG, Jiang X (2009) A novel AHI-1-BCR-ABL-JAK2 interaction complex mediates cellular resistance to tyrosine kinase inhibitors in CML. ASH Annual Meeting Abstracts 114:38

    Google Scholar 

  158. Fiskus W, Pronpat M, Balasis M, Bali P, Estrella V, Kamaraswamy S, Rao R, Rocha K, Herger B, Lee F (2006) Cotreatment with varinostat enhances activity of desatinib against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells. Cancer Res 12:5869–5878

    Article  CAS  Google Scholar 

  159. Zhang B, Strauss AC, Chu S, Ho Y, Shiang KD, Snyder DS, Huettner CS, Shultz L, Holyoake T, Bhalia R (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17:427–442

    Article  PubMed  CAS  Google Scholar 

  160. Essers MA, Offner S, Balnco-Bose WE (2009) IFNα activates dormant hematopoietic stem cells in vivo. Nature 458:904–908

    Article  CAS  PubMed  Google Scholar 

  161. Sato T, Onai N, Yoshihara H (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nature Med 15:696–700

    Article  CAS  PubMed  Google Scholar 

  162. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109:58–60

    Article  CAS  PubMed  Google Scholar 

  163. Takeuchi M, Kimura S, Kuroda J, Ashihara E, Kawatani M, Osada H, Umezawa K, Yasui E, Imoto M, Tsuruo T, Yokota A, Tanaka R, Nagao R, Nakahata T, Fujiyama Y, Maekawa T (2010) Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Cell Death Diff 17:1211–1220

    Article  CAS  Google Scholar 

  164. Servida F, Soligo D, Derlia D, Henderson C, Brancolini C, Lombardi L, Deliliers GL (2005) Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia 19:2324–2331

    Article  CAS  PubMed  Google Scholar 

  165. Heaney NB, Pellicano F, Zhang B, Crawford L, Chu S, Kazmi SM, Allan EK, Jorgensen HG, Irvine AE, Bhatia R, Hloyoake TL (2010) Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood 115:2241–2250

    Article  CAS  PubMed  Google Scholar 

  166. Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY, Weinmann R, Holyoake TL (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111:2843–2853

    Article  CAS  PubMed  Google Scholar 

  167. Pellicano F, Copèalnd M, Jorgensen HG, Mountford J, Leber B, Holyoake TL (2009) BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34+38 cells, through activation of protein kinase Cbeta. Blood 114:4186–4196

    Article  CAS  PubMed  Google Scholar 

  168. Bellodo C, Lidonnici MR, Hamilton A, Helagson GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Tirrò E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123

    Article  CAS  Google Scholar 

  169. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signaling causes polythemia vera. Nature 434:1144–1148

    Article  CAS  PubMed  Google Scholar 

  170. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Jones C, Zehnder JL, Lilleberg SL, Weissman IL (2006) The JAK2 V617F mutation occurs in hematopoietic cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Nat Acad Sci USA 103:6224–6229

    Article  CAS  PubMed  Google Scholar 

  171. Delhommeau F, Dupont S, Tonetti C, Massé A, Godin I, Le Couedic JP, Debili N, Saulnier P, Casadevall N, Vainchenker W, Giraudier S (2007) Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109:71–77

    Article  CAS  PubMed  Google Scholar 

  172. James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M, Lippert E, Mahon FX, Pasquet JM, Etienne G, Delhommeau F, Giraidier S, Vainchenker W, De Verneuil H (2008) The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders in a reflection of disease heterogeneity. Blood 112:2429–2438

    Article  CAS  PubMed  Google Scholar 

  173. Mulally A, Lane S, Ball B, Megerdichian C, Okabe R, Al-Shahrour F, Paktinant M, Haydu JE, Housman E, Lord A, Wernig G, Kharas M, Mercher T, Kotok J, Gilliland G, Ebert B (2010) Physiological JAK2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17:584–596

    Article  CAS  Google Scholar 

  174. Li J, Spensberger D, Ahn JS, Anand S, Beer PA, Ghevaert C, Chen E, Forrai A, Scott LM, Ferreira R, Campbell PJ, Watson SP, Liu P, Erber WN, Huntly BJ, Ottersbach K, Green AR (2010) JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 116:1528–1538

    Google Scholar 

  175. Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG (2010) Conditional expression of heterozygous or homozygous JAK2V617F from its endogenous promoter induces polycythemia vera-like disease. Blood 115:3589–3597

    Article  CAS  PubMed  Google Scholar 

  176. Marty C, Lacout C, Martin A, Hasan S, Jacquot S, Birling MC, Vainchenker W, Villeval JL (2010) Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 116:783–787

    Article  CAS  PubMed  Google Scholar 

  177. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lécluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguié F, Fontenay M, Vainchenker W, Bernard OA (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301

    Article  PubMed  Google Scholar 

  178. Ito S, D’Alessio A, Taranova O, Hong K, Sowers L, Zhang Y (2010) Role of Tet proteins in 5mC to 5hm conversion, ES-cell self-renewal and inner mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  Google Scholar 

  179. Haeno H, Levine RL, Gilliland G, Michor F (2009) A progenitor cell origin of myeloid malignancies. Proc Natl Acad Sci USA 106:16616–16621

    Article  CAS  PubMed  Google Scholar 

  180. Schaub F, Losser R, Li S, Hao-Schen H, Lehmann T, Tichelli A, Skoda RC (2010) Clonal analysis of TET2 and JAK2 mutations suggest that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 115:2003–2007

    Article  CAS  PubMed  Google Scholar 

  181. Teffeeri A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, AXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138

    Article  CAS  Google Scholar 

  182. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, Carlo H, Pahl HL, Collins A, Reityer A, Grand F, Cross NC (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genet 41:446–449

    Article  CAS  PubMed  Google Scholar 

  183. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, Gisslinger H, Kralovics R (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genet 41:450–454

    Article  CAS  PubMed  Google Scholar 

  184. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mulally A, Ebert BL, Bass A, Marubayashi S, Heguy A, Garcia-Manero G, Kantarjian H, Offitt K, Stone RM, Gilliland DG, Klein RJ, Levine RL (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nature Genet 41:455–459

    Article  CAS  PubMed  Google Scholar 

  185. Campbell PJ (2009) Somatic and germile genetics at the JAK2 locus. Nature Genet 41:385–386

    Article  CAS  PubMed  Google Scholar 

  186. Jones A, Campbell PJ, Beer P, Schnittger S, Vannucchi A, Zoi K, Percy M, McMullin MF, Scott L, Tapper W, Silver R, Oscier D, Harrison C, Grallert H, Kisialiou A, Strike P, Chase A, Green A, Cross N (2010) The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115:4517–4523

    Article  CAS  PubMed  Google Scholar 

  187. Beer P, Delhommeau F, Le Couédic JP, Dawson M, Chen E, Bareford D, Kusec R, McMullin F, Harrison C, Vannucchi A, Vainchenker W, Green A (2010) Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115:2891–2900

    Article  CAS  PubMed  Google Scholar 

  188. Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR, Cheng L (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480

    Article  CAS  PubMed  Google Scholar 

  189. Dick J (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  CAS  PubMed  Google Scholar 

  190. Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weismann IL (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17:3029–3035

    Article  CAS  PubMed  Google Scholar 

  191. Passegué E, Jamieson CHM, Aille SLE, Weissman IL (2003) Normal and leukemic hemopoiesis: are leukemias a stem cell disorder or reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100:11842–11849

    Article  PubMed  CAS  Google Scholar 

  192. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amarel S, Curley D, Cliams IR (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596

    Article  CAS  PubMed  Google Scholar 

  193. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG (2006) Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature 442:818–822

    Article  CAS  PubMed  Google Scholar 

  194. Sommervaille TC, Matheny CJ, Spenver CJ, Iwasaki M, Rinn JL, Witten DM, Chang HY, Shurtleffs A, Downing JR, Cleary ML (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Stem Cells 4:129–140

    Article  CAS  Google Scholar 

  195. Bereshchenko O, Mancini E, Moore S, Bilbao D, Mansson R, Luc S, Grover A, Jacobsen SW, Bryder D, Nerlov C (2009) Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 16:390–400

    Article  CAS  PubMed  Google Scholar 

  196. Miyamoto T, Weissman IL, Akashi K (2000) AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8:21 chromosomal translocation. Proc Natl Acad Sci USA 97:7521–7526

    Article  CAS  PubMed  Google Scholar 

  197. Morisot S, Wayne AS, Bohana-Kashtan O, Kaplan IM, Gocke CD, Hidreth R, Stetler-Stevenson M, Walker RL, Davis S, Meltzer PS, Wheelan SJ, Brown P, Jones RJ, Shultz LD, Civin CI (2010) High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias. Leukemia 24:1859–1866

    Google Scholar 

  198. Chiu PP, Jiang H, Dick JE (2010) Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood (in press)

  199. Raaijmakers M, Mukherjee S, Guo S, Zhang S, Kobayashi T, Scoonmaker J, Ebert B, Al-Shahrour F, Hasserjian R, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature 464:852–857

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Testa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testa, U. Leukemia stem cells. Ann Hematol 90, 245–271 (2011). https://doi.org/10.1007/s00277-010-1118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1118-7

Keywords

Navigation