Skip to main content
Log in

Wnt and Notch signaling pathways selectively regulating hematopoiesis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hematopoietic stem and progenitor cells (HSPCs) are the source of all blood cells in the adult body. The pool of HSPCs is formed during embryogenesis process through a well-characterized succession of intra-embryonic regions and organs. The spatial and temporal restrictions in definitive hematopoietic development and the signaling molecules involved are of great interest as these may prove useful for generating and expanding these clinically important cell populations ex vivo. To elucidate the mechanism by which definitive HSPCs expand during this limited developmental time frame, we analyzed the spatial and temporal programmed gene expression patterns of Wnt and Notch signaling members during hematopoietic development. Genes related to the Wnt signaling pathway were up-regulated in E10.5 aorta-gonad-mesonephros (AGM) and E14.5 fetal liver corresponding to the inherent proliferation potential of hematopoietic progenitors, whereas genes related to the Notch signaling pathway were identified as up-regulated in E10.5 AGM, and bone marrow coincides with the maintenance of undifferentiation state of hematopoietic progenitors. Our findings suggest that Wnt and Notch signalings are integrated and are selectively regulating hematopoiesis. The spatial and temporal balance between Wnt and Notch signaling orchestrates the precise progression of hematopoietic progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graf T (2002) Differentiation plasticity of hematopoietic cells. Blood 99:3089–3101

    Article  CAS  PubMed  Google Scholar 

  2. Lum LG, Fok H, Sievers R et al (2004) Targeting of Lin-Sca+ hematopoietic stem cells with bispecific antibodies to injured myocardium. Blood Cells Mol Dis 32:82–87

    Article  CAS  PubMed  Google Scholar 

  3. Henning RJ, Burgos JD, Ondrovic L et al (2006) Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant 15:647–658

    Article  PubMed  Google Scholar 

  4. Hicks C, Wong R, Manoharan A, Kwan YL (2007) Viable CD34+/CD133+ blood progenitor cell dose as a predictor of haematopoietic engraftment in multiple myeloma patients undergoing autologous peripheral blood stem cell transplantation. Ann Hematol 86:591–598

    Article  CAS  PubMed  Google Scholar 

  5. Nobuhisa I, Ohtsu N, Okada S et al (2007) Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures. Exp Cell Res 313:965–974

    Article  CAS  PubMed  Google Scholar 

  6. Holyoake TL, Nicolini FE, Eaves CJ (1999) Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 27:1418–1427

    Article  CAS  PubMed  Google Scholar 

  7. Nicolini FE, Holyoake TL, Cashman JD et al (1999) Unique differentiation programs of human fetal liver stem cells shown both in vitro and in vivo in NOD/SCID mice. Blood 94:2686–2695

    CAS  PubMed  Google Scholar 

  8. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    Article  CAS  PubMed  Google Scholar 

  9. Kumaravelu P, Hook L, Morrison AM et al (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129:4891–4899

    CAS  PubMed  Google Scholar 

  10. Keller G, Lacaud G, Robertson S (1999) Development of the hematopoietic system in the mouse. Exp Hematol 27:777–787

    Article  CAS  PubMed  Google Scholar 

  11. Tavian M, Hallais MF, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126:793–803

    CAS  PubMed  Google Scholar 

  12. Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95:2284–2288

    CAS  PubMed  Google Scholar 

  13. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT–WNT situation. Nat Rev Immunol 5:21–30

    Article  CAS  PubMed  Google Scholar 

  14. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  15. Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in the self-renewal of haemapoietic stem cells. Nature 423:409–414

    Article  CAS  PubMed  Google Scholar 

  16. Austin TW, Solar GP, Ziegler FC et al (1997) A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89:3624–3635

    CAS  PubMed  Google Scholar 

  17. Murdoch B, Chadwick K, Martin M et al (2003) Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 100:3422–3427

    Article  CAS  PubMed  Google Scholar 

  18. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R (1998) Role of members of the Wnt gene family in human hematopoiesis. Blood 92:3189–3202

    Google Scholar 

  19. Nikolova T, Wu M, Brumbarov K et al (2007) Wnt-conditioned media differentially affect the proliferation and differentiation of cord-blood-derived CD133 + cells in vitro. Differentiation 75:100–111

    Article  CAS  PubMed  Google Scholar 

  20. Lako M, Lindsay S, Lincoln J et al (2001) Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev 103:49–59

    Article  CAS  PubMed  Google Scholar 

  21. Kumano K, Chiba S, Kunisato A et al (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711

    Article  CAS  PubMed  Google Scholar 

  22. Ohishi K, Katayama N, Shiku H et al (2003) Notch signalling in hematopoiesis. Semin Cell Dev Biol 14:143–150

    Article  CAS  PubMed  Google Scholar 

  23. Duncan AW, Rattis FM, Dimascio LN et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    Article  CAS  PubMed  Google Scholar 

  24. Varnum-Finney B, Brashem-Stein C, Bernstein ID (2003) Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101:1784–1789

    Article  CAS  PubMed  Google Scholar 

  25. Brandon C, Eisenberg LM, Eisenberg CA (2000) WNT signaling modulates the diversification of hematopoietic cells. Blood 96:4132–4141

    CAS  PubMed  Google Scholar 

  26. Tickenbrock L, Hehn S, Sargin B et al (2008) Activation of Wnt signalling in acute myeloid leukemia by induction of Frizzled-4. Int J Oncol 33:1215–1221

    CAS  PubMed  Google Scholar 

  27. Vijayaragavan K, Szabo E, Bossé M et al (2009) Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell 4:248–262

    Article  CAS  PubMed  Google Scholar 

  28. Witze ES, Litman ES, Argast GM et al (2008) Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320:365–369

    Article  CAS  PubMed  Google Scholar 

  29. Murphy MJ, Wilson A, Trumpp A (2005) More than just proliferation: Myc function in stem cells. Trends Cell Biol 15:128–137

    Article  CAS  PubMed  Google Scholar 

  30. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  PubMed  Google Scholar 

  31. Shtutman M, Zhurinsky J, Simcha I et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    Article  CAS  PubMed  Google Scholar 

  32. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  33. Weng AP, Millholland JM, Yashiro-Ohtani Y et al (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109

    Article  CAS  PubMed  Google Scholar 

  34. Satoh Y, Matsumura I, Tanaka H et al (2004) Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem 279:24986–14993

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez MJ, Holmes A, Miles C, Dzierzak E (1996) Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5:513–525

    Article  PubMed  Google Scholar 

  36. Zhao Y, Lin Y, Zhan Y et al (2000) Murine hematopoietic stem cell characterization and its regulation in BM transplantation. Blood 96:3016–3022

    CAS  PubMed  Google Scholar 

  37. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    Article  CAS  PubMed  Google Scholar 

  38. Pearce DJ, Ridler CM, Simpson C et al (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546

    Article  CAS  PubMed  Google Scholar 

  39. Matsuzaki Y, Kinjo K, Mulligan RC et al (2004) Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20:87–93

    Article  CAS  PubMed  Google Scholar 

  40. Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Axel R. Zander and Prof. Boris Fehse at University Medical Center Hamburg-Eppendorf in Germany for critical review of the manuscript. This work was supported by National Natural Science Foundation (No.30570773) and Doctoral Fund of Ministry of Education of China (No.20060487061, No.200804870008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanying Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, K., Huang, L., Zhou, Z. et al. Wnt and Notch signaling pathways selectively regulating hematopoiesis. Ann Hematol 89, 749–757 (2010). https://doi.org/10.1007/s00277-010-0923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-0923-3

Keywords

Navigation