Skip to main content

Advertisement

Log in

Shedding of the endothelial receptor tyrosine kinase Tie2 correlates with leukemic blast burden and outcome after allogeneic hematopoietic stem cell transplantation for AML

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Angiogenesis plays an important role in the growth and viability of hematologic malignancies. Emerging data suggest a crucial involvement of the endothelial-specific Tie2 receptor and its antagonistic ligand Angiopoietin-2 (Ang-2) in this process. The purpose of this study was to elucidate whether the soluble domain of the Tie2 receptor (sTie2) predicts outcome in patients with acute myeloid leukemia (AML) undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Serum levels of sTie2 and Ang-2 were measured by ELISA in 181 AML patients before conditioning for HSCT. The median follow-up time was 22 months after HSCT. Pre-HSCT sTie2 levels were significantly higher in patients (median 2.2 (range 1.8–3.0) ng/mL) compared to healthy controls (1.3 (0.9–1.6); p < 0.0001). Elevated sTie2 levels were independently associated with active AML but did not relate to cytogenetics/mutational status before transplantation. Logistic regression analysis identified elevated sTie2 (odds ratio (OR) 3.07 (95% confidence interval (CI; 1.56–6.04), p = 0.001) as a strong predictor for disease relapse and poor overall survival after HSCT. In a multimarker approach the highest risk for relapse was observed in patients with both elevated sTie2 and elevated Ang-2 (OR 4.07, (95% CI 1.79–9.25) p < 0.0001), as well as patients with both elevated Ang-2 and elevated bone marrow blast count (OR 4.16, (95% CI 1.88–7.36) p < 0.0001). Elevated serum sTie2 levels were related to active leukemia, correlated with the percentage of leukemic blasts in the bone marrow, and independently predicted relapse in AML patients after allogeneic HSCT. Furthermore, our data indicate that Tie2 shedding and Ang-2 release seem to reflect overlapping, but nevertheless distinctive features in leukemia-associated neoangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dazzi F, Fozza C (2007) Disease relapse after haematopoietic stem cell transplantation: risk factors and treatment. Best Pract Res Clin Haematol 20:311–327

    Article  CAS  PubMed  Google Scholar 

  2. Elmaagacli AH, Beelen DW, Trenn G, Schmidt O, Nahler M, Schaefer UW (1999) Induction of a graft-versus-leukemia reaction by cyclosporin A withdrawal as immunotherapy for leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transplant 23:771–777

    Article  CAS  PubMed  Google Scholar 

  3. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23:5675–5687

    Article  PubMed  Google Scholar 

  4. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Dohner H (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1909–1918

    Article  CAS  PubMed  Google Scholar 

  5. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1, 612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92:2322–2333

    CAS  PubMed  Google Scholar 

  6. Edenfield WJ, Gore SD (1999) Stage-specific application of allogeneic and autologous marrow transplantation in the management of acute myeloid leukemia. Semin Oncol 26:21–34

    CAS  PubMed  Google Scholar 

  7. Estey EH (2000) Treatment of relapsed and refractory acute myelogenous leukemia. Leukemia 14:476–479

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  9. Rajkumar SV, Mesa RA, Tefferi A (2002) A review of angiogenesis and anti-angiogenic therapy in hematologic malignancies. J Hematother Stem Cell Res 11:33–47

    Article  CAS  PubMed  Google Scholar 

  10. Li WW, Hutnik M, Gehr G (2008) Antiangiogenesis in haematological malignancies. Br J Haematol 143:622–631

    Article  PubMed  Google Scholar 

  11. Mesters RM (2002) Angiogenesis in hematologic malignancies. Ann Hematol 81(Suppl 2):S72–S74

    PubMed  Google Scholar 

  12. Loges S, Heil G, Bruweleit M, Schoder V, Butzal M, Fischer U, Gehling UM, Schuch G, Hossfeld DK, Fiedler W (2005) Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: expression of angiopoietin-2 represents an independent prognostic factor for overall survival. J Clin Oncol 23:1109–1117

    Article  CAS  PubMed  Google Scholar 

  13. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S, Herrera F, Kienast J, Berdel WE, Mesters RM (2003) Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 63:7241–7246

    CAS  PubMed  Google Scholar 

  14. Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    Article  CAS  PubMed  Google Scholar 

  15. Fiedler U, Krissl T, Koidl S, Weiss C, Koblizek T, Deutsch U, Martiny-Baron G, Marme D, Augustin HG (2003) Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 278:1721–1727

    Article  CAS  PubMed  Google Scholar 

  16. Wakui S, Yokoo K, Muto T, Suzuki Y, Takahashi H, Furusato M, Hano H, Endou H, Kanai Y (2006) Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Invest 86:1172–1184

    CAS  PubMed  Google Scholar 

  17. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574

    CAS  PubMed  Google Scholar 

  18. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    Article  CAS  PubMed  Google Scholar 

  19. Fam NP, Verma S, Kutryk M, Stewart DJ (2003) Clinician guide to angiogenesis. Circulation 108:2613–2618

    Article  PubMed  Google Scholar 

  20. Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, Koh GY (2000) Angiopoietin-1 inhibits irradiation- and mannitol-induced apoptosis in endothelial cells. Circulation 101:2317–2324

    CAS  PubMed  Google Scholar 

  21. Nykanen AI, Krebs R, Saaristo A, Turunen P, Alitalo K, Yla-Herttuala S, Koskinen PK, Lemstrom KB (2003) Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107:1308–1314

    Article  PubMed  Google Scholar 

  22. Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C (2005) Protective role of angiopoietin-1 in endotoxic shock. Circulation 111:97–105

    Article  CAS  PubMed  Google Scholar 

  23. van Meurs M, Kumpers P, Ligtenberg JJ, Meertens JH, Molema G, Zijlstra JG (2009) Bench-to-bedside review: angiopoietin signalling in critical illness—a future target? Crit Care 13:207

    Article  PubMed  Google Scholar 

  24. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel–Palade bodies. Blood 103:4150–4156

    Article  CAS  PubMed  Google Scholar 

  25. Mandriota SJ, Pyke C, Di Sanza C, Quinodoz P, Pittet B, Pepper MS (2000) Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 156:2077–2089

    CAS  PubMed  Google Scholar 

  26. Pichiule P, Chavez JC, LaManna JC (2004) Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 279:12171–12180

    Article  CAS  PubMed  Google Scholar 

  27. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785

    CAS  PubMed  Google Scholar 

  28. Tanaka F, Ishikawa S, Yanagihara K, Miyahara R, Kawano Y, Li M, Otake Y, Wada H (2002) Expression of angiopoietins and its clinical significance in non-small cell lung cancer. Cancer Res 62:7124–7129

    CAS  PubMed  Google Scholar 

  29. Sfiligoi C, de Luca A, Cascone I, Sorbello V, Fuso L, Ponzone R, Biglia N, Audero E, Arisio R, Bussolino F, Sismondi P, De Bortoli M (2003) Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer 103:466–474

    Article  CAS  PubMed  Google Scholar 

  30. Schliemann C, Bieker R, Thoennissen N, Gerss J, Liersch R, Kessler T, Buchner T, Berdel WE, Mesters RM (2007) Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia. Leukemia 21:1901–1906

    Article  CAS  PubMed  Google Scholar 

  31. Lee CY, Tien HF, Hu CY, Chou WC, Lin LI (2007) Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia. Br J Cancer 97:877–882

    CAS  PubMed  Google Scholar 

  32. Kumpers P, Koenecke C, Hecker H, Hellpap J, Horn R, Verhagen W, Buchholz S, Hertenstein B, Krauter J, Eder M, David S, Gohring G, Haller H, Ganser A (2008) Angiopoietin-2 predicts disease-free survival after allogeneic stem cell transplantation in patients with high-risk myeloid malignancies. Blood 112:2139–2148

    Article  PubMed  Google Scholar 

  33. Mammoto T, Parikh SM, Mammoto A, Gallagher D, Chan B, Mostoslavsky G, Ingber DE, Sukhatme VP (2007) Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem 282:23910–23918

    Article  CAS  PubMed  Google Scholar 

  34. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314:738–744

    Article  CAS  PubMed  Google Scholar 

  35. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29:2011–2022

    Article  CAS  PubMed  Google Scholar 

  36. Findley CM, Cudmore MJ, Ahmed A, Kontos CD (2007) VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol 27:2619–2626

    Article  CAS  PubMed  Google Scholar 

  37. Reusch P, Barleon B, Weindel K, Martiny-Baron G, Godde A, Siemeister G, Marme D (2001) Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis 4:123–131

    Article  CAS  PubMed  Google Scholar 

  38. Peters KG, Kontos CD, Lin PC, Wong AL, Rao P, Huang L, Dewhirst MW, Sankar S (2004) Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res 59:51–71

    Article  CAS  PubMed  Google Scholar 

  39. Martin V, Liu D, Fueyo J, Gomez-Manzano C (2008) Tie2: a journey from normal angiogenesis to cancer and beyond. Histol Histopathol 23:773–780

    CAS  PubMed  Google Scholar 

  40. Harris AL, Reusch P, Barleon B, Hang C, Dobbs N, Marme D (2001) Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin Cancer Res 7:1992–1997

    CAS  PubMed  Google Scholar 

  41. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    CAS  PubMed  Google Scholar 

  42. Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N, Watanabe A, Kikuta A, Tanaka A, Asami K, Sekine I, Mugishima H, Nishimura Y, Koizumi S, Horikoshi Y, Mimaya J, Ohta S, Nishikawa K, Iwai A, Shimokawa T, Nakayama M, Kawakami K, Gushiken T, Hyakuna N, Fujimoto T et al (1999) Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leukemia 13:38–43

    Article  CAS  PubMed  Google Scholar 

  43. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R (1999) Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93:3074–3080

    CAS  PubMed  Google Scholar 

  44. Nasarre P, Thomas M, Kruse K, Helfrich I, Wolter V, Deppermann C, Schadendorf D, Thurston G, Fiedler U, Augustin HG (2009) Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res 69(4):1324–1333

    Article  CAS  PubMed  Google Scholar 

  45. Hou HA, Chou WC, Lin LI, Tang JL, Tseng MH, Huang CF, Yao M, Chen CY, Tsay W, Tien HF (2008) Expression of angiopoietins and vascular endothelial growth factors and their clinical significance in acute myeloid leukemia. Leuk Res 32:904–912

    Article  CAS  PubMed  Google Scholar 

  46. Schliemann C, Bieker R, Padro T, Kessler T, Hintelmann H, Buchner T, Berdel WE, Mesters RM (2006) Expression of angiopoietins and their receptor Tie2 in the bone marrow of patients with acute myeloid leukemia. Haematologica 91:1203–1211

    CAS  PubMed  Google Scholar 

  47. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10

    Article  CAS  PubMed  Google Scholar 

  48. van der Heijden M, van Nieuw Amerongen GP, van Hinsbergh VW, Groeneveld AJ (2009) The interaction of soluble Tie2 with angiopoietins and pulmonary vascular permeability in septic and non-septic critically ill patients. Shock (in press). doi:10.1097/SHK.0b013e3181b2f978

  49. Kumpers P, Lukasz A, David S, Horn R, Hafer C, Faulhaber-Walter R, Fliser D, Haller H, Kielstein JT (2008) Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 12:R147

    Article  PubMed  Google Scholar 

  50. Gallagher DC, Bhatt RS, Parikh SM, Patel P, Seery V, McDermott DF, Atkins MB, Sukhatme VP (2007) Angiopoietin 2 is a potential mediator of high-dose interleukin 2-induced vascular leak. Clin Cancer Res 13:2115–2120

    Article  CAS  PubMed  Google Scholar 

  51. Kumpers P, Hellpap J, David S, Horn R, Leitolf H, Haller H, Haubitz M (2009) Circulating angiopoietin-2 is a marker and potential mediator of endothelial cell detachment in ANCA-associated vasculitis with renal involvement. Nephrol Dial Transplant 24(6):1845–1850

    Article  PubMed  Google Scholar 

  52. Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, Silverman JM, Rasmussen E, Sun YN, Zhong D, Hwang YC, Evelhoch JL, Oliner JD, Le N, Rosen LS (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27(21):3557–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the doctors and nurses on our transplant unit and in the outpatient clinic for their dedicated work. We thank Julian Hellpap for excellent technical assistance.

Authorship

C.K. and P.K. had the initial idea, designed and performed the research, analyzed the results, prepared the figures, and wrote the manuscript. A.L. established the immunoassay and performed the measurements. W.V. stored and provided samples and reviewed the manuscript. E.D., S.B., J.K., M.E, and identified patients provided clinical data, participated in the design of the study, and reviewed the manuscript. G.G. and B.S. contributed cytogenetic data and reviewed the manuscript. A.G. supervised the project, participated in the design and interpretation of the study, and reviewed the manuscript.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Ganser.

Additional information

Christian Koenecke and Philipp Kümpers contributed equally to the manuscript and are both considered first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenecke, C., Kümpers, P., Lukasz, A. et al. Shedding of the endothelial receptor tyrosine kinase Tie2 correlates with leukemic blast burden and outcome after allogeneic hematopoietic stem cell transplantation for AML. Ann Hematol 89, 459–467 (2010). https://doi.org/10.1007/s00277-009-0869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0869-5

Keywords

Navigation