Skip to main content

Advertisement

Log in

Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Osteoporosis has been recently recognized as a severe comorbidity factor in hemophilia. However, its pathogenesis is still obscure. We evaluated the incidence of osteoporosis in 90 hemophilia patients and investigated possible correlations with clinical and laboratory data. Out of the 90 patients, 80 (89%) had severe hemophilia, and 35 (38.9%) were human immunodeficiency virus (HIV)-positive. Hemophilic arthropahty was assessed using World Federation of Hemophilia clinical score and Petterson radiological score. Bone mineral density of the lumbar spine (LS) and femoral neck (FN) were measured using dual-energy X-ray absortiometry. Bone turnover was evaluated by the measurement of: (1) bone resorption markers [N-terminal cross-linking telopeptide of collagen type I (NTX), C-terminal cross-linking telopeptide of collagen type I (CTX), and tartrate-resistant acid phosphatase isoform-5b (TRACP-5b)], (2) bone formation markers [bone-alkaline phosphatase (bALP) and osteocalcin], and (3) osteoclast stimulators (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tumor necrosis factor-alpha). Osteopenia or osteoporosis was observed in 86% and 65% of the patients in FN and LS, respectively. Osteoporosis was more common among HIV-positive patients in both FN (65.3% vs 41.6%; p = 0.007) and LS (17.86% vs 5.41%, p = 0.004). The severity of osteoporosis in FN correlated with the patients' total clinical and radiological score (p = 0.001). Hemophilia patients showed increased osteoclastic activity (significant increase of TRACP-5b, NTX, and CTX), which was not accompanied by a comparable increased bone formation (reduced osteocalcin and borderline increase of bALP). In multivariate analysis, HIV infection (p = 0.05) and total clinical score (p = 0.001) were independent risk factors for osteoporosis development. We conclude that there is a high prevalence of osteoporosis among hemophiliacs, which is related to the severity of arthropathy and is enhanced by HIV infection. We report for the first time a high bone resorption that seems not to be balanced by a comparable bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Genant HK, Cooper C, Poor G et al (1999) Interim report and recommendation of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  2. National Institutes of Health (2000) NIH consensus statement osteoporosis prevention, diagnosis and therapy. NIH Consensus Statement 17:1–45

    Google Scholar 

  3. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts and prospects. J Clin Invest 115:3318–3325. doi:10.1172/JCI27071

    Article  CAS  PubMed  Google Scholar 

  4. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    Article  CAS  PubMed  Google Scholar 

  5. Voskaridou E, Terpos E (2004) New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 127:127–139. doi:10.1111/j.1365-2141.2004.05143.x

    Article  CAS  PubMed  Google Scholar 

  6. Cummings SR, Melton LJ, 3rd (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767. doi:10.1016/S0140-6736(02)08657-9

    Article  PubMed  Google Scholar 

  7. Hoyer LW (1994) Haemophilia A. N Engl J Med 330:38–47. doi:10.1056/NEJM199401063300108

    Article  CAS  PubMed  Google Scholar 

  8. Gallacher SJ, Deighan C, Wallace AM et al (1994) Association of severe hemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med 87:181–186

    CAS  PubMed  Google Scholar 

  9. Wallny TA, Scholz DT, Oldenburg J et al (2007) Osteoporosis in haemophilia—an undrerestimated comorbidity? Haemophilia 13:79–84. doi:10.1111/j.1365-2516.2006.01405.x

    Article  CAS  PubMed  Google Scholar 

  10. Nair AP, JiJina F, Ghosh K et al (2007) Osteoporosis in young haemophiliacs from Western India. Am J Hematol 82:453–457. doi:10.1002/ajh.20877

    Article  PubMed  Google Scholar 

  11. Rodriguez-Merchan EC (2003) Orthopaedic assessment in haemophilia. Haemophilia 9(Suppl 1):65–74. doi:10.1046/j.1365-2516.9.s1.9.x

    Article  PubMed  Google Scholar 

  12. Pettersson H (1994) Can join damage be quantified? Semin Hematol 31(Suppl 2):1–4

    Google Scholar 

  13. Nguyen TV, Pocock N, Eisman JA (2000) Interpretation of bone mineral density measurement and its change. J Clin Densitom 3:107–119. doi:10.1385/JCD:3:2:107

    Article  CAS  PubMed  Google Scholar 

  14. Binkley NC, Schmeer P, Wasnich RD et al (2002) What are the criteria by which a densitometric diagnosis of osteoporosis can be made in males and non-Caucasians? J Clin Densitom 5(Suppl):19–27. doi:10.1385/JCD:5:3S:S19

    Article  Google Scholar 

  15. Leib ES, Lewiecki EM, Binkley N et al (2004) Official positions of the International Society for Clinical Densitometry. J Clin Densitom 7:1–6. doi:10.1385/JCD:7:1:1

    Article  PubMed  Google Scholar 

  16. Hadjidakis D, Kokkinakis E, Giannopoulos G et al (1997) Bone mineral density of vertebrae, proximal femur and os calcis in normal Greek subjects as assessed by dual-energy X-ray absorptiometry: comparison with other populations. Eur J Clin Invest 27:219–227. doi:10.1046/j.1365-2362.1997.980636.x

    Article  CAS  PubMed  Google Scholar 

  17. Barnes C, Wong P, Egan B et al (2004) Reduced bone density among children with severe hemophilia. Pediatrics 114:177–181. doi:10.1542/peds.114.2.e177

    Article  Google Scholar 

  18. Tlacuilo-Parra A, Morales-Zambrano R, Tostado-Rabago N et al (2008) Inactivity is a risk factor for bone mineral density among haemophilic children. BJH 140:562–567

    Article  Google Scholar 

  19. Hoots WK (2006) Pathogenesis of hemophilic arthropathy. Semin Hematol 43(Suppl 1):S18–S22. doi:10.1053/j.seminhematol.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  20. Manolagas S, Jilka R (1995) Bone marrow, cytokines and bone remodeling. N Engl J Med 3325:305–311. doi:10.1056/NEJM199502023320506

    Article  Google Scholar 

  21. Boyce B, Li P, Yao Z et al (2005) TNF-α and pathologic bone resorption. Keio J Med 54:127–131. doi:10.2302/kjm.54.127

    Article  CAS  PubMed  Google Scholar 

  22. Gurevitch O, Khitrin S, Valitov A et al (2007) Osteoporosis of hematologic etiology. Exp Hematol 35:128–136. doi:10.1016/j.exphem.2006.09.010

    Article  PubMed  Google Scholar 

  23. Olsson R, Johansson C, Lindstedt G et al (1994) Risk factors for bone loss in chronic active hepatitis and primary biliary cirrhosis. Scand J Gastroenterol 29:753–756. doi:10.3109/00365529409092505

    Article  CAS  PubMed  Google Scholar 

  24. Schiefke I, Fach A, Wiedmann M et al (2005) Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J Gastroenterol 11:1843–1847

    CAS  PubMed  Google Scholar 

  25. Tsuneoka K, Tameda Y, Takase K et al (1996) Osteodystrophy in patients with chronic hepatitis and liver cirrhosis. J Gastroenterol 31:669–678. doi:10.1007/BF02347615

    Article  CAS  PubMed  Google Scholar 

  26. Landonio S, Quirino T, Bonfanti P et al (2004) Osteopenia and osteoporosis in HIV + patients, untreated or receiving HAART. Biomed Pharmacother 58:505–508

    CAS  PubMed  Google Scholar 

  27. Mondy K, Yarasheski K, Powderly WG et al (2003) Longitudinal evolution of bone mineral density and bone markers in HIV-infected individuals. Clin Infect Dis 36:482–490. doi:10.1086/367569

    Article  PubMed  Google Scholar 

  28. Moore AL, Vashisht A, Sabin CA et al (2001) Reduced bone mineral density in HIV-positive individuals. AIDS 15:1731–1733. doi:10.1097/00002030-200109070-00019

    Article  CAS  PubMed  Google Scholar 

  29. Fakruddin JM, Laurence J (2005) HIV-1 Vpr enhances production or receptor of activated activity. Arch Virol 150:67–78. doi:10.1007/s00705-004-0395-7

    Article  CAS  PubMed  Google Scholar 

  30. Carr A, Miller J, Eisman JA et al (2001) Osteopenia in HIV-infected men association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS 15:703–709. doi:10.1097/00002030-200104130-00005

    Article  CAS  PubMed  Google Scholar 

  31. Nolan D, Upton R, McKinnon E et al (2001) Stable of increasing bone mineral density in HIV infected patients treated with nelfinavir of indinavir. AIDS 15:1275–1280. doi:10.1097/00002030-200107060-00009

    Article  CAS  PubMed  Google Scholar 

  32. Amiel C, Ostertag A, Slama L et al (2004) BMD is reduced in HIV infected men irrespective of treatment. J Bone Miner Res 19:402–409. doi:10.1359/JBMR.0301246

    Article  CAS  PubMed  Google Scholar 

  33. Brown TT, Ruppe MD, Kassner R et al (2004) Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. J Clin Endocrinol Metab 89:1200–1206. doi:10.1210/jc.2003-031506

    Article  CAS  PubMed  Google Scholar 

  34. Huang JS, Rietschel P, Hadigan CM et al (2001) Increased abdominal visceral fat is associated with reduced bone density in HIV infected men with lipodystrophy. AIDS 15:975–982. doi:10.1097/00002030-200105250-00005

    Article  CAS  PubMed  Google Scholar 

  35. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Karafoulidou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsarou, O., Terpos, E., Chatzismalis, P. et al. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection. Ann Hematol 89, 67–74 (2010). https://doi.org/10.1007/s00277-009-0759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0759-x

Keywords

Navigation