Skip to main content
Log in

Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

According to the new World Health Organization (WHO) classification (2008), chronic myeloid malignancies are divided in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and overlap MDS/MPN cases. From morphological aspects, these categories show overlaps. To evaluate whether these morphological similarities have genetic parallels, we investigated 1,851 cases with suspected/confirmed myelodysplastic or myeloproliferative diseases by chromosome banding and molecular analyses. Cytogenetics revealed aberrant karyotypes in 354 patients (19.1% of the original cohort) who were the basis of further analysis. The distribution of chromosomal aberrations differed significantly between categories. Isolated +9 and gain of 9p were exclusively observed in MPN (+9: 10/93; 11%; p < 0.001; +9p: 6/93; 7% of all aberrant MPN cases) but were not detected in MDS or MDS/MPN (p = 0.001). Isolated del(5q) (p = 0.002), −7 in combination with other aberrations (p = 0.016), and complex aberrations (p = 0.003) were 2.9- to 7.5-fold more frequent in MDS than in MPN. Trisomies 8 and 21 and del(20q) were comparably frequent in both subgroups. Interestingly, the MDS/MPN overlap cohort showed a higher frequency of −7 accompanied by other aberrations (3/17; 18% of all aberrant cases; p = 0.001), i(17)(q10) (2/17; 12%; p = 0.013), and +21 (2/17; 12%; p = 0.013) when compared to MPN or MDS only. These differences support the category for MDS/MPN within the new WHO classification. Overlaps between the diverse disorders were seen also for the JAK2V617F (MPN 66/89; 74%; MDS/MPN 4/14; 29%; MDS 2/63; 3%) and NRAS mutations (MDS 2/67; 3%; MPN 2/4; MDS/MPN 1/1). In conclusion, cytogenetics and molecular genetics show overlaps in varying proportions of MDS and MPN cases which might indicate common pathways in their etiology. Some markers are strongly associated with one of these disorders and can be helpful for differential diagnosis especially in difficult cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swerdlow S, Campo E, Lee Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J (2008) WHO Classification of tumours of haematopoietic and lymphoid tissues. WHO Press, Geneva

    Google Scholar 

  2. Orazi A, Germing U (2008) The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia 22:1308–1319

    Article  CAS  PubMed  Google Scholar 

  3. Bain BJ (1999) The relationship between the myelodysplastic syndromes and the myeloproliferative disorders. Leuk Lymphoma 34:443–449

    CAS  PubMed  Google Scholar 

  4. Szpurka H, Tiu R, Murugesan G, Aboudola S, Hsi ED, Theil KS, Sekeres MA, Maciejewski JP (2006) Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood 108:2173–2181

    Article  CAS  PubMed  Google Scholar 

  5. Fenaux P (2001) Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 73:429–437

    Article  CAS  PubMed  Google Scholar 

  6. Haase D (2008) Cytogenetic features in myelodysplastic syndromes. Ann Hematol 87:515–526

    Article  PubMed  Google Scholar 

  7. Bench AJ, Cross NC, Huntly BJ, Nacheva EP, Green AR (2001) Myeloproliferative disorders. Best Pract Res Clin Haematol 14:531–551

    Article  CAS  PubMed  Google Scholar 

  8. Bacher U, Haferlach T, Kern W, Hiddemann W, Schnittger S, Schoch C (2005) Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann Hematol 84:250–257

    Article  PubMed  Google Scholar 

  9. Hellstrom-Lindberg E, Willman C, Barrett AJ, Saunthararajah Y (2000) Achievements in understanding and treatment of myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 2000:110–132

    Google Scholar 

  10. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    CAS  PubMed  Google Scholar 

  11. James C, Ugo V, Casadevall N, Constantinescu SN, Vainchenker W (2005) A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med 11:546–554

    Article  CAS  PubMed  Google Scholar 

  12. Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S, Beran M, Estey E, Kantarjian HM, Issa JP (2005) JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 106:3370–3373

    Article  CAS  PubMed  Google Scholar 

  13. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, White H, Zoi C, Loukopoulos D, Terpos E, Vervessou EC, Schultheis B, Emig M, Ernst T, Lengfelder E, Hehlmann R, Hochhaus A, Oscier D, Silver RT, Reiter A, Cross NC (2005) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168

    Article  CAS  PubMed  Google Scholar 

  14. Tefferi A, Lasho TL, Gilliland G (2005) JAK2 mutations in myeloproliferative disorders. N Engl J Med 353:1416–1417

    Article  CAS  PubMed  Google Scholar 

  15. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, Gilliland DG, Tefferi A (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106:1207–1209

    Article  CAS  PubMed  Google Scholar 

  16. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P, Kuo MC (2004) Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18:466–475

    Article  CAS  PubMed  Google Scholar 

  17. Lin P, Jones D, Medeiros LJ, Chen W, Vega-Vazquez F, Luthra R (2006) Activating FLT3 mutations are detectable in chronic and blast phase of chronic myeloproliferative disorders other than chronic myeloid leukemia. Am J Clin Pathol 126:530–533

    Article  CAS  PubMed  Google Scholar 

  18. Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92:744–752

    Article  CAS  PubMed  Google Scholar 

  19. Schnittger S, Bacher U, Kern W, Haferlach T, Haferlach C (2007) JAK2V617F as progression marker in CMPD and as cooperative mutation in AML with trisomy 8 and t(8;21): a comparative study on 1103 CMPD and 269 AML cases. Leukemia 21:1843–1845

    Article  CAS  PubMed  Google Scholar 

  20. Jaffe ES, Harris NL, Stein H, Vardiman JW (2001) World health organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  21. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U, Hehlmann R, Hiddemann W, Haferlach T (2002) Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 16:53–59

    Article  CAS  PubMed  Google Scholar 

  22. Schnittger S, Bacher U, Kern W, Schroder M, Haferlach T, Schoch C (2006) Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E. Leukemia 20:2195–2197

    Article  CAS  PubMed  Google Scholar 

  23. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66

    Article  CAS  PubMed  Google Scholar 

  24. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W, Griesinger F (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 14:796–804

    Article  CAS  PubMed  Google Scholar 

  25. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107:3847–3853

    Article  CAS  PubMed  Google Scholar 

  26. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, Haferlach T, Hiddemann W, Falini B (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106:3733–3739

    Article  CAS  PubMed  Google Scholar 

  27. Sole F, Luno E, Sanzo C, Espinet B, Sanz GF, Cervera J, Calasanz MJ, Cigudosa JC, Milla F, Ribera JM, Bureo E, Marquez ML, Arranz E, Florensa L (2005) Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica 90:1168–1178

    CAS  PubMed  Google Scholar 

  28. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, Kundgen A, Lubbert M, Kunzmann R, Giagounidis AA, Aul C, Trumper L, Krieger O, Stauder R, Muller TH, Wimazal F, Valent P, Fonatsch C, Steidl C (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    CAS  PubMed  Google Scholar 

  30. Ohyashiki K, Aota Y, Akahane D, Gotoh A, Miyazawa K, Kimura Y, Ohyashiki JH (2005) The JAK2 V617F tyrosine kinase mutation in myelodysplastic syndromes (MDS) developing myelofibrosis indicates the myeloproliferative nature in a subset of MDS patients. Leukemia 19:2359–2360

    Article  CAS  PubMed  Google Scholar 

  31. Ingram W, Lea NC, Cervera J, Germing U, Fenaux P, Cassinat B, Kiladjian JJ, Varkonyi J, Antunovic P, Westwood NB, Arno MJ, Mohamedali A, Gaken J, Kontou T, Czepulkowski BH, Twine NA, Tamaska J, Csomer J, Benedek S, Gattermann N, Zipperer E, Giagounidis A, Garcia-Casado Z, Sanz G, Mufti GJ (2006) The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia 20:1319–1321

    Article  CAS  PubMed  Google Scholar 

  32. Schoch C, Schnittger S, Kern W, Dugas M, Hiddemann W, Haferlach T (2003) Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia. Haematologica 88:351–352

    PubMed  Google Scholar 

  33. Farag SS, Archer KJ, Mrozek K, Vardiman JW, Carroll AJ, Pettenati MJ, Moore JO, Kolitz JE, Mayer RJ, Stone RM, Larson RA, Bloomfield CD (2002) Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol 21:1041–1051

    CAS  PubMed  Google Scholar 

  34. Wang PW, Eisenbart JD, Espinosa R III, Davis EM, Larson RA, Le Beau MM (2000) Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics 67:28–39

    Article  CAS  PubMed  Google Scholar 

  35. Asimakopoulos FA, Green AR (1996) Deletions of chromosome 20q and the pathogenesis of myeloproliferative disorders. Br J Haematol 95:219–226

    Article  CAS  PubMed  Google Scholar 

  36. Nakagawa T, Saitoh S, Imoto S, Itoh M, Tsutsumi M, Hikiji K, Nakamura H, Matozaki S, Ogawa R, Nakao Y (1992) Multiple point mutation of N-ras and K-ras oncogenes in myelodysplastic syndrome and acute myelogenous leukemia. Oncol 49:114–122

    Article  CAS  Google Scholar 

  37. Paquette RL, Landaw EM, Pierre RV, Kahan J, Lubbert M, Lazcano O, Isaac G, McCormick F, Koeffler HP (1993) N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 82:590–599

    CAS  PubMed  Google Scholar 

  38. Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T, Ridge S, Carter G, White D, Oscier D, Chevret S, West R (1998) RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 12:887–892

    Article  CAS  PubMed  Google Scholar 

  39. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, Taniwaki M, Kashima K, Fujii H, Abe T, Misawa S (1997) Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 11:1442–1446

    Article  CAS  PubMed  Google Scholar 

  40. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JP (2001) FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97:3589–3595

    Article  CAS  PubMed  Google Scholar 

  41. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, Ehninger G, Illmer T (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Svetlana Asenova (Clinic for Stem Cell Transplantation, University Cancer Center Hamburg) for excellent assistance with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacher, U., Schnittger, S., Kern, W. et al. Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category. Ann Hematol 88, 1207–1213 (2009). https://doi.org/10.1007/s00277-009-0745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0745-3

Keywords

Navigation