Skip to main content
Log in

Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Micro RNA (miRNA) are small non-coding RNA molecules which have a post-transcriptional inhibitory regulation function, e.g. in megakaryopoiesis. A characteristic of Philadelphia chromosome-negative myeloproliferative neoplasm (Ph MPN) is the abundance of morphologically aberrant megakaryocytes. Based on previously published in vitro megakaryocytic differentiation assay data, we selected miRNA 10a, 17-5p, 20a and 126 and potential target proteins (HOXA1, RUNX1) for analysis of laser-microdissected bone marrow megakaryocytes from Ph MPN and controls (n = 66). Furthermore, we tested a potential influence of cytoreductive treatment on miRNA expression in bone marrow cells during the course of Ph MPN (n = 18). In summary, miRNA 17-5p, 20a and 126 are constitutively expressed in Ph MPN megakaryopoiesis while low or absent miRNA 10a appeared to correlate with strong megakaryocytic HOXA1 protein expression. No association to thrombocytosis, JAK2V617F mutations or cytoreductive treatment (bone marrow cells) were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lawrie CH (2007) MicroRNAs and haematology: small molecules, big function. Br J Haematol 137(6):503–512 doi:10.1111/j.1365-2141.2007.06611.x

    Article  PubMed  CAS  Google Scholar 

  2. Calin GA, Pekarsky Y, Croce CM (2007) The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20(3):425–437 doi:10.1016/j.beha.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  3. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25(5):635–646 doi:10.1016/j.molcel.2007.02.011

    Article  PubMed  CAS  Google Scholar 

  4. Guglielmelli P, Tozzi L, Pancrazzi A, Bogani C, Antonioli E, Ponziani V, MPD Research Consortium et al (2007) MicroRNA expression profile in granulocytes from primary myelofibrosis patientsExp Hematol.35(11):1708–1718 doi:10.1016/j.exphem.2007.08.020

  5. Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 35(11):1657–1667 doi:10.1016/j.exphem.2007.08.021

    Article  PubMed  CAS  Google Scholar 

  6. Bruchova H, Merkerova M, Prchal JT (2008) Aberrant expression of microRNA in polycythemia vera. Haematologica 93:1009–1016

    Article  PubMed  CAS  Google Scholar 

  7. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al (2007) Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+cells. Blood 109(10):4399–4405 doi:10.1182/blood-2006-09-045104

    Article  PubMed  CAS  Google Scholar 

  8. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148 doi:10.1038/nature03546

    Article  PubMed  CAS  Google Scholar 

  9. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3(7):e270 doi:10.1371/journal.pmed.0030270

    Article  PubMed  Google Scholar 

  10. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA et al (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 110(4):1092–1097 doi:10.1182/blood-2007-04-083501

    Article  PubMed  CAS  Google Scholar 

  11. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103(13):5078–5083 doi:10.1073/pnas.0600587103

    Article  PubMed  CAS  Google Scholar 

  12. Eklund EA (2007) The role of HOX genes in malignant myeloid disease. Curr Opin Hematol 14(2):85–89 doi:10.1097/MOH.0b013e32801684b6

    Article  PubMed  CAS  Google Scholar 

  13. Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, Goldfarb AN (2003) RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101(11):4333–4341 doi:10.1182/blood-2002-09-2708

    Article  PubMed  CAS  Google Scholar 

  14. Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC (2002) Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 34(1):24–32 doi:10.1002/gcc.10031

    Article  PubMed  CAS  Google Scholar 

  15. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9(7):775–787 doi:10.1038/ncb1613

    Article  PubMed  CAS  Google Scholar 

  16. Buhr T, Büsche G, Choritz H, Länger F, Kreipe H (2003) Evolution of myelofibrosis in chronic idiopathic myelofibrosis as evidenced in sequential bone marrow biopsy specimens. Am J Clin Pathol 119(1):152–158 doi:10.1309/PTVGB3DXB8A8M7KD

    Article  PubMed  Google Scholar 

  17. Hussein K, Brakensiek K, Buesche G, Buhr T, Wiese B, Kreipe H et al (2007) Different involvement of the megakaryocytic lineage by the JAK2 V617F mutation in polycythemia vera, essential thrombocythemia and chronic idiopathic myelofibrosis. Ann Hematol 86(4):245–253 doi:10.1007/s00277-007-0252-3

    Article  PubMed  Google Scholar 

  18. Bock O, Schlué J, Lehmann U, von Wasielewski R, Länger F, Kreipe H (2002) Megakaryocytes from chronic myeloproliferative disorders show enhanced nuclear bFGF expression. Blood 100(6):2274–2275 doi:10.1182/blood-2002-06-1811

    Article  PubMed  CAS  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408 doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  20. Hussein K, Bock O, Seegers A, Flasshove M, Henneke F, Buesche G et al (2007) Myelofibrosis evolving during imatinib treatment of a chronic myeloproliferative disease with coexisting BCR-ABL translocation and JAK2V617F mutation. Blood 109(9):4106–4107 doi:10.1182/blood-2006-12-061135

    Article  PubMed  CAS  Google Scholar 

  21. Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21(5):912–916

    PubMed  CAS  Google Scholar 

  22. Nouzova M, Holtan N, Oshiro MM, Isett RB, Munoz-Rodriguez JL, List AF et al (2004) Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther 311(3):968–981 doi:10.1124/jpet.104.072488

    Article  PubMed  CAS  Google Scholar 

  23. Shen WF, Hu YL, Uttarwar L, Passegue E Largman C (2008) MicroRNA-126 regulates hoxa9 by binding to the homeobox. Mol Cell Biol 28:4609–4619

    Article  PubMed  CAS  Google Scholar 

  24. Tedeschi FA, Zalazar FE (2006) HOXA9 gene expression in the chronic myeloid leukemia progression. Leuk Res 30(11):1453–1456 doi:10.1016/j.leukres.2006.02.022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Sabine Schröter and Ms. Anna-Lena Becker for their skilful work in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kais Hussein.

Additional information

Research grant: Deutsche Krebshilfe, Dr. Mildred Scheel Stiftung 10-2191 (O.B., H.K.); Deutsche Forschungsgemeinschaft-DFG BO 1954/1-1 (O.B., H.K.); Hochschul-interne Leistungsförderung-HiLF 11/07, Medizinische; Hochschule Hannover (K.H.)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Megakaryocytic HOXA1 and RUNX1 protein expression and the corresponding miRNA 10a, 17-5p, 20a and 126. Representative immunohistological images are depicted in Fig. 2. A subfraction of cases (34/66) was analysed for megakaryocytic HOXA1 and RUNX1 protein expression. Abbreviations: megakaryocytes (MK), not determined (ND). (DOC 111  KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussein, K., Dralle, W., Theophile, K. et al. Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol 88, 325–332 (2009). https://doi.org/10.1007/s00277-008-0602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0602-9

Keywords

Navigation