Skip to main content
Log in

Chromatographic analysis of Hb S for the diagnosis of various sickle cell disorders in Pakistan

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Sickle cell disease remains a relatively obscure theme in research on haemoglobinopathies in Pakistan. Limited data is available regarding its prevalence in the country. The objective of our study was not only to estimate the frequency of different sickle cell diseases but also to provide quantitative estimation of haemoglobin S and other haemoglobin variants using an automated high-performance liquid chromatography (HPLC) system. For this purpose, we retrospectively evaluated the results of HPLC performed on all patients with suspected haemoglobinopathies during the years 2005 and 2006. Information derived from various sources was used to identify a particular genotype by analysing each sample containing Hb S with respect to haemoglobin, red cell indices and levels of various associated haemoglobin variants. Analysis of 15,699 samples identified 302 patients with Hb S (1.92%). The genotypes identified included Sβ0 (46.7%), SS (19.2%), SA (11.6%), Sβ+ (8.6%) and SD (2.3%). Thirty-five cases could not be categorised and were labelled ‘unclassified’. Majority of the patients (62.3%) were below the age of 18 years. Balochistan, which is the largest province based on the area, yielded the highest number of patients (n = 140). In the Sβ0 group, the mean haemoglobin and Hb S were lower in children compared to adults (p value of 0.001 and 0.016, respectively). We conclude that sickle cell disorders are prevalent in Pakistan to a significant extent, being concentrated in certain areas of the country. We present the first report of various haemoglobin S genotypes from our population. It is hoped that it will act as a database to characterise the same for our population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strasser BJ (2002) Linus Pauling’s “molecular diseases”: between history and memory. Am J Med Genet 115:83–93

    Article  PubMed  Google Scholar 

  2. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326–328

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed S, Saleem M, Modell B, Petrou M (2002) Screening extended families for genetic haemoglobin disorders in Pakistan. N Engl J Med 347:1162–1168

    Article  PubMed  Google Scholar 

  4. Angastiniotis M, Modell B (1998) Global epidemiology of haemoglobin disorders. Ann N Y Acad Sci 850:251–269

    Article  PubMed  CAS  Google Scholar 

  5. Daar S, Hussain HM, Gravell D, Nagel RL, Krishnamoorthy R (2000) Genetic epidemiology of Hb S in Oman: multicentric origin for the betaS gene. Am J Hematol 64:39–46

    Article  PubMed  CAS  Google Scholar 

  6. Miller CJ, Dunn EV, Berg B, Abdouni SF (2003) A hematological survey of preschool children of the United Arab Emirates. Saudi Med J 24:609–613

    PubMed  Google Scholar 

  7. Baysal E (2005) Molecular heterogeneity of beta-thalassemia in the United Arab Emirates. Community Genet 8:35–39

    Article  PubMed  CAS  Google Scholar 

  8. Rajab AG, Patton MA, Modell B (2000) Study of hemoglobinopathies in Oman through a national register. Saudi Med J 21:1168–1172

    PubMed  CAS  Google Scholar 

  9. Kazmi KA, Rab SM (1990) Sickle cell anaemia in Pakistan. Br J Clin Pract 44:503–505

    PubMed  CAS  Google Scholar 

  10. Clarke GM, Higgins TN (2000) Laboratory investigation of hemoglobinopathies and thalassemias: review and update. Clin Chem 46:1284–1290

    PubMed  CAS  Google Scholar 

  11. Ou CN, Rognerud CL (1993) Rapid analysis of haemoglobin variants by cation-exchange HPLC. Clin Chem 39:820–824

    PubMed  CAS  Google Scholar 

  12. Ou CN, Rognerud CL (2001) Diagnosis of hemoglobinopathies: electrophoresis vs. HPLC. Clin Chim Acta 313:187–194

    Article  CAS  Google Scholar 

  13. Ghani R, Manji MA, Ahmed N (2002) Haemoglobinopathies among five major ethnic groups in Karachi, Pakistan. Southeast Asian J Trop Med Public Health 33:855–861

    PubMed  Google Scholar 

  14. Joutovsky A, Hadzi-Nesic J, Nardi MA (2004) HPLC retention time as a diagnostic tool for haemoglobin variants and hemoglobinopathies: a study of 60000 samples in a clinical diagnostic laboratory. Clin Chem 50:1736–1747

    Article  PubMed  CAS  Google Scholar 

  15. Eastman JW, Wong R, Liao CL, Morales DR (1996) Automated HPLC screening of newborns for sickle cell anaemia and other hemoglobinopathies. Clin Chem 42:704–710

    PubMed  CAS  Google Scholar 

  16. Shokrani M, Terrell F, Turner EA, Aguinaga MD (2000) Chromatographic measurements of haemoglobin A2 in blood samples that contain sickle haemoglobin. Ann Clin Lab Sci 30:191–194

    PubMed  CAS  Google Scholar 

  17. Riou J, Godart C, Hurtrel D, Mathis M, Bimet C, Bardakdjian-Michau J, Prehu C, Wajcman H, Galacteros F (1997) Cation-exchange HPLC evaluated for presumptive identification of haemoglobin variants. Clin Chem 43:34–39

    PubMed  CAS  Google Scholar 

  18. Colah RB, Surve R, Sawant P, D’Souza E, Italia K, Phanasgaonkar S, Nadkarni AH, Gorakshakar AC (2007) HPLC studies in hemoglobinopathies. Indian J Pediatr 74:657–662

    Article  PubMed  CAS  Google Scholar 

  19. Lal A, Vichinsky EP (2005) Sickle cell disease. In: Hoffbrand AV, Catovsky D, Tuddenham EGD (eds) Postgraduate hematology. Blackwell, Oxford, pp 104–118

    Chapter  Google Scholar 

  20. Bain BJ (2001) Sickle cell haemoglobin and its interactions with other variant haemoglobins and with thalassemias. In: Bain BJ (ed) Haemoglobinopathy diagnosis. 1st edn. Blackwell Science, Oxford, pp 113–153

    Google Scholar 

  21. Campbell M, Henthorn JS, Davies SC (1999) Evaluation of cation-exchange HPLC compared with isoelectric focusing for neonatal hemoglobinopathy screening. Clin Chem 45:969–975

    PubMed  CAS  Google Scholar 

  22. Frietsch T, Segiet W, Schutz P, Haux P, Lorentz A (1999) Perioperative monitoring of haemoglobin fractions in homozygous sickle cell disease. Anaesthesist 48:231–235

    Article  PubMed  CAS  Google Scholar 

  23. Flint J, Harding RM, Boyce AJ, Clegg JB (1998) The population genetics of the haemoglobinopathies. Baillieres Clin Haematol 11:1–51

    Article  PubMed  CAS  Google Scholar 

  24. Sharma NP, Gupta SC, Atal PR, Mehrotra TN, Agarwal AK, Kapoor KK (1976) Abnormal haemoglobins in the Pakistani Armed Forces personnel. Indian J Med Res 64:883–890

    PubMed  CAS  Google Scholar 

  25. Balgir RS (2000) The burden of haemoglobinopathies in India and the challenges ahead. Current Science 79:1536–1547

    CAS  Google Scholar 

  26. Steinberg M, Hsu H, Nagel R (1995b) Gender and haplotype effects upon hematological manifestation of adult sickle cell anaemia. Am J Hematol 48:175–181

    Article  PubMed  CAS  Google Scholar 

  27. Baig SM, Azhar A, Hassan H, Baig JM, Aslam M, Ud Din MA, Qureshi JA, Zaman T (2006) Prenatal diagnosis of beta-thalassemia in Southern Punjab, Pakistan. Prenat Diagn 26:903–905

    Article  PubMed  CAS  Google Scholar 

  28. Davies S, Henthorn J, Brozovic M (1983) Iron deficiency in sickle cell anaemia. J Clin Pathol 36:1012–1015

    Article  PubMed  CAS  Google Scholar 

  29. Rehman Z, Saleem M, Alvi AA, Anwar M, Ahmed PA, Ahmad M (1991) Alpha-thalassaemia: prevalence and pattern in northern Pakistan. J Pak Med Assoc 41:246–247

    PubMed  CAS  Google Scholar 

  30. Molla A, Khurshid M, Molla AM (1992) Prevalence of iron deficiency anaemia in children of the urban slums of Karachi. J Pak Med Assoc 42:118–121

    PubMed  CAS  Google Scholar 

  31. Smetanina N, Gu L-H, Huisman T (1998) Comparison of relative quantities of g-messenger RNA and fetal haemoglobin in SS patients with different haplotypes. Acta Hematol 100:4–8

    Article  CAS  Google Scholar 

  32. Bunn HF (1997) Pathogenesis and treatment of sickle cell disease. N Engl J Med 337:762–769

    Article  PubMed  CAS  Google Scholar 

  33. Zurbriggen K, Schmugge M, Schmid M, Durka S, Kleinert P, Kuster T, Heizmann CW, Troxler H (2005) Analysis of minor hemoglobins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 51:989–996

    Article  PubMed  CAS  Google Scholar 

  34. Head CE, Conroy M, Jarvis M, Phelan L, Bain BJ (2004) Some observations on the measurement of haemoglobin A2 and S percentages by high performance liquid chromatography in the presence and absence of alpha thalassaemia. J Clin Pathol 57:276–280

    Article  PubMed  CAS  Google Scholar 

  35. Camargo JL, Gross JL (2004) Conditions associated with very low values of glycohaemoglobin measured by an HPLC method. J Clin Pathol 57:346–349

    Article  PubMed  CAS  Google Scholar 

  36. Papadea C, Cate JC (1996) Identification and quantification of hemoglobins A, F, S, and C by automated chromatography. Clin Chem 42:57–63

    PubMed  CAS  Google Scholar 

  37. Fisher SI, Haga JA, Castleberry SM, Hall RB, Thompson WC (1997) Validation of an automated HPLC method for quantification of haemoglobin S. Clin Chem 43:1667–1669

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazish Khalid Hashmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashmi, N.K., Moiz, B., Nusrat, M. et al. Chromatographic analysis of Hb S for the diagnosis of various sickle cell disorders in Pakistan. Ann Hematol 87, 639–645 (2008). https://doi.org/10.1007/s00277-008-0495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0495-7

Keywords

Navigation