Skip to main content
Log in

Platelet glycoprotein IIIa gene expression in normal and malignant megakaryopoiesis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The platelet glycoprotein GPIIb/IIIa functions as a receptor for fibrinogen in platelet aggregation process and is an example of an early megakaryocytic marker. One of a chronic myeloproliferative disorder, essential thrombocythemia, is caused by abnormal megakaryopoiesis. Due to the lack of reliable method for the diagnosis of that disease and the importance of GPIIIa as a marker for identifying early megakaryocytes, the expression level of GPIIIa in mononuclear and CD34+ cells and during megakaryopoiesis was compared between normal individuals and patients with essential thrombocythemia. For this purpose, surface markers GPIIIa and CD34 were analyzed with flow cytometer, and GPIIIa expression level was measured with real-time polymerase chain reaction (PCR) method. Mononuclear and CD34+ cells from normal individuals and patients were isolated, analyzed, and seeded into serum-free medium Stemspan™ Medium enriched with IL-6, IL-3, thrombopoietin, and stem cell factor. The difference between normal individuals and patients was noticed in the expression level of GPIIIa in the CD34+ cells and in the time course of cell surface markers. CD34+ cells from patients has 33% higher of GPIIIa antigens on the surface and 34% higher GPIIIa messenger RNA (mRNA) expression level. The negative effect of IL-3 on the maturation of megakaryocytes was not noticed; there were 56.46% of megakaryoblasts at the end of the cultivation, and after 14 days of culturing, 111.09 times increase of GPIIIa mRNA in patients was detected. This study is therefore offering the method that could serve as reliable tool for discriminating ET from other similar myeloproliferative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Naik UP, Parise LV (1997) Structure and function of platelet alpha IIb beta 3. Curr Opin Hematol 4:317–322

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg N, Yatuv R, Orion Y, Zivelin A, Dardik R, Peretz H, Seligsohn U (1997) Glanzmann thrombasthenia caused by an 11.2-kb deletion in the glycoprotein IIIa (beta3) is a second mutation in Iraqi Jews that stemmed from a distinct founder. Blood 89:3654–3662

    PubMed  CAS  Google Scholar 

  3. Bray PF, Barsh G, Rosa JP, Luo XY, Magenis E, Shuman MA (1988) Physical linkage of the genes for platelet membrane glycoproteins IIb and IIIa. Proc Natl Acad Sci U S A 85:8683–8687

    Article  PubMed  CAS  Google Scholar 

  4. Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J, Vainchenker W (1996) Characterization of a bipotent erythro-MK progenitor in human bone marrow. Blood 88:1284–1296

    PubMed  CAS  Google Scholar 

  5. Okumura N, Tsuji K, Nakahata T (1992) Changes in cell surface antigen expressions during proliferation and differentiation of human erythroid progenitors. Blood 80:642–650

    PubMed  CAS  Google Scholar 

  6. Ody C, Vaigot P, Quere P, Imhof BA, Corbel C (1999) Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood 93:2898–2906

    PubMed  CAS  Google Scholar 

  7. Block KL, Poncz M (1995) Platelet glycoprotein IIb gene expression as a model of megakaryocyte-specific expression. Stem Cells 13:135–145

    Article  PubMed  CAS  Google Scholar 

  8. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S (1981) Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58:916–919

    PubMed  CAS  Google Scholar 

  9. Murphy S, Peterson P, Iland H, Laszlo J (1997) Experience of the Polycythemia Vera Study Group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Semin Hematol 34:29–39

    PubMed  CAS  Google Scholar 

  10. Westwood NB, Pearson TC (1996) Diagnostic applications of haemopoietic progenitor culture techniques in polycythaemias and thrombocythaemias. Leuk Lymphoma 22(Suppl 1):95–103

    Article  PubMed  Google Scholar 

  11. Ficko T, Cernelc P (2005) Real-time quantitative PCR assay for analysis of platelet glycoprotein IIIa gene expression. J Biochem Biophys Methods 62:241–250

    Article  PubMed  CAS  Google Scholar 

  12. van den Oudenrijn S, von dem Borne AE, de Haas M (2001) Influence of medium components on ex vivo megakaryocyte expansion. J Hematother Stem Cell Res 10:193–200

    Article  PubMed  Google Scholar 

  13. Bruno E, Hoffman R (1989) Effect of interleukin 6 on in vitro human megakaryocytopoiesis: its interaction with other cytokines. Exp Hematol 17:1038–1043

    PubMed  CAS  Google Scholar 

  14. Ikebuchi K, Wong GG, Clark SC, Ihle JN, Hirai Y, Ogawa M (1987) Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci U S A 84:9035–9039

    Article  PubMed  CAS  Google Scholar 

  15. Ratajczak MZ, Ratajczak J, Ford J, Kregenow R, Marlicz W, Gewirtz AM (1996) FLT3/FLK-2 (STK-1) Ligand does not stimulate human megakaryopoiesis in vitro. Stem Cells 14:146–150

    Article  PubMed  CAS  Google Scholar 

  16. Piacibello W, Garetto L, Sanavio F, Severino A, Fubini L, Stacchini A, Dragonetti G, Aglietta M (1996) The effects of human FLT3 ligand on in vitro human megakaryocytopoiesis. Exp Hematol 24:340–346

    PubMed  CAS  Google Scholar 

  17. Kaushansky K (1995) Thrombopoietin: the primary regulator of platelet production. Blood 86:419–431

    PubMed  CAS  Google Scholar 

  18. Wendling F (1999) Thrombopoietin: its role from early hematopoiesis to platelet production. Haematologica 84:158–166

    PubMed  CAS  Google Scholar 

  19. Emerson SG, Yang YC, Clark SC, Long MW (1988) Human recombinant granulocyte-macrophage colony stimulating factor and interleukin 3 have overlapping but distinct hematopoietic activities. J Clin Invest 82:1282–1287

    Article  PubMed  CAS  Google Scholar 

  20. Kaushansky K, O'Hara PJ, Berkner K, Segal GM, Hagen FS, Adamson JW (1986) Genomic cloning, characterization, and multilineage growth-promoting activity of human granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci U S A 83:3101–3105

    Article  PubMed  CAS  Google Scholar 

  21. van den Oudenrijn S, de Haas M, Calafat J, van der Schoot CE, von dem Borne AE (1999) A combination of megakaryocyte growth and development factor and interleukin-1 is sufficient to culture large numbers of megakaryocytic progenitors and MKs for transfusion purposes. Br J Haematol 106:553–563

    Article  PubMed  Google Scholar 

  22. van den Oudenrijn S, von dem Borne AE, de Haas M (2000) Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol 28(9):1054–1061

    Article  PubMed  Google Scholar 

  23. Dolzhanskiy A, Basch RS, Karpatkin S (1997) The development of human MKs: III. Development of mature MKs from highly purified committed progenitors in synthetic culture media and inhibition of thrombopoietin-induced polyploidization by interleukin-3. Blood 89:426–434

    PubMed  CAS  Google Scholar 

  24. Dolzhanskiy A, Hirst J, Basch RS, Karpatkin S (1998) Complementary and antagonistic effects of IL-3 in the early development of human MKs in culture. Br J Haematol 100:415–426

    Article  PubMed  CAS  Google Scholar 

  25. Axelrad AA, Eskinazi D, Correa PN, Amato D (2000) Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia. Blood 96:3310–3321

    PubMed  CAS  Google Scholar 

  26. Vainchenker W, Kieffer N (1988) Human megakaryocytopoiesis: in vitro regulation and characterization of megakaryocytic precursor cells by differentiation markers. Blood Rev 2:102–107

    Article  PubMed  CAS  Google Scholar 

  27. Debili N, Kieffer N, Nakazawa M, Guichard J, Titeux M, Cramer E, Breton-Gorius J, Vainchenker W (1990) Expression of platelet glycoprotein Ib by cultured human megakaryocytes: ultrastructural localization and biosynthesis. Blood 76:368–376

    PubMed  CAS  Google Scholar 

  28. Debili N, Issaad C, Masse JM, Guichard J, Katz A, Breton-Gorius J, Vainchenker W (1992) Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood 80:3022–3035

    PubMed  CAS  Google Scholar 

  29. Tao H, Gaudry L, Rice A, Chong B (1999) Cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Exp Hematol 27:293–301

    Article  PubMed  CAS  Google Scholar 

  30. Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, Inaba M, Ikehara S, Kobayashi Y (2000) Comparative analyses of megakaryocytes derived from cord blood and bone marrow. Br J Haematol 108:602–609

    Article  PubMed  CAS  Google Scholar 

  31. Rolovic Z, Basara N, Gotic M, Sefer D, Bogdanovic A (1995) The determination of spontaneous megakaryocyte colony formation is an unequivocal test for discrimination between essential thrombocythaemia and reactive thrombocytosis. Br J Haematol 90:326–331

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Ficko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ficko, T. Platelet glycoprotein IIIa gene expression in normal and malignant megakaryopoiesis. Ann Hematol 87, 131–137 (2008). https://doi.org/10.1007/s00277-007-0387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-007-0387-2

Keywords

Navigation