Skip to main content

Advertisement

Log in

A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

A novel small molecule inhibitor, 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB), competes with the Bak BH3 peptide to bind Bcl-2 protein with a binding affinity of IC50 = 0.70 μM, as assessed by a fluorescence polarization based binding assay. HL-60 cells express the highest levels of Bcl-2 among the cell lines examined. Treated with 5 μM of MNB only for 6 h, 85% of HL-60 cells were detected to undergo apoptosis. Pan-caspase inhibitor, Z-VAD-FMK, blocks MNB-induced apoptosis in HL-60 cells. Caspase-2, caspase-3, caspase-7, caspase-8, caspase-9, and PARP activation were observed at as early as 4 to 6 h of MNB treatment. In addition, it has been confirmed that the caspase-3 specific inhibitor, Z-DEVD-FMK, blocks the activation of caspase-8 in MNB-treated HL-60 cells. MNB treatment does not change Bcl-2 or Bax expression level in HL-60 cells, but causes Bid cleavage. Further experiments have illustrated that MNB inhibits the heterodimerization of Bcl-2 with Bax or Bid, reduces the mitochondrial membrane potential (ΔΨmt), and induces cytochrome c release from mitochondria in HL-60 cells. These results suggest that MNB induces apoptosis in HL-60 by inhibiting the heterodimerization of Bcl-2 with pro-apoptosis Bcl-2 members, resulting in a decrease in the mitochondrial membrane potential and cytochrome c release, activation of caspases and PARP; it is a caspase-dependent process in which the activation of caspase-8 is dependent on the mitochondrial apoptosis signal transduction pathway. MNB prolongs the life spans of HL-60 bearing mice, potently kills fresh AML and ALL cells, indicating that it has the potential to be developed to treat leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haarman EG, Kaspers GJ, Pieters R, van Zantwijk CH, Broekema GJ, Hahlen K, Veerman AJ (1999) BCL-2 expression in childhood leukemia versus spontaneous apoptosis, drug induced apoptosis, and in vitro drug resistance. Adv Exp Med Biol 457:325–333

    PubMed  CAS  Google Scholar 

  2. Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S (2005) Apoptosis and immaturity in acute myeloid leukemia. Hematology 10:25–34

    Article  PubMed  Google Scholar 

  3. Campos L, Sabido O, Viallet A, Vasselon C, Guyotat D (1999) Expression of apoptosis-controlling proteins in acute leukemia cells. Leuk Lymphoma 33:499–509

    PubMed  CAS  Google Scholar 

  4. Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, Behm FG, Arico M, Campana D (1996) Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87:1140–1146

    PubMed  CAS  Google Scholar 

  5. Salomons GS, Smets LA, Verwijs-Janssen M, Hart AA, Haarman EG, Kaspers GJ, Wering EV, Der Does-Van Den Berg AV, Kamps WA (1999) Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia 13:1574–1580

    Article  PubMed  CAS  Google Scholar 

  6. Klumper E, Pieters R, Veerman AJ, Huismans DR, Loonen AH, Hahlen K, Kaspers GJ, van Wering ER, Hartmann R, Henze G (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86:3861–3868

    PubMed  CAS  Google Scholar 

  7. Majlessipour F, Avramis IA, Kwock R, Weinberg KI, Avrami VI (2002) The combination regimen of idarubicin and taxotere is effective against human drug-resistant leukemic cell lines. Anticancer Res 22:1361–1368

    PubMed  CAS  Google Scholar 

  8. Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418

    Article  PubMed  CAS  Google Scholar 

  9. Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G (1997) Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in testicular germ cell tumour cell lines. Int J Cancer 73:592–599

    Article  PubMed  CAS  Google Scholar 

  10. Houldsworth J, Xiao H, Murty VV, Chen W, Ray B, Reuter VE, Bosl GJ, Chaganti RS (1998) Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16:2345–2349

    Article  PubMed  CAS  Google Scholar 

  11. Campos L, Sabido O, Liang H, Vasselon C, Guyotat D (1996) Expression of human Bcl-xL, an inhibitor of programmed cell death. Nature 33:335–341

    Google Scholar 

  12. Holinger EP, Chittenden T, Lutz RJ (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 274:13298–13304

    Article  PubMed  CAS  Google Scholar 

  13. Finnegan NM, Curtin JF, Prevost G, Morgan B, Cotter TG (2001) Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions. Br J Cancer 85:115–121

    Article  PubMed  CAS  Google Scholar 

  14. Shangary S, Johnson DE (2002) Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 41:9485–9495

    Article  PubMed  CAS  Google Scholar 

  15. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129

    Article  PubMed  CAS  Google Scholar 

  16. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3:173–182

    Article  PubMed  CAS  Google Scholar 

  17. Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3:183–191

    Article  PubMed  CAS  Google Scholar 

  18. Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (2001) Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44:4313–4324

    Article  PubMed  CAS  Google Scholar 

  19. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  20. Manion MK, Fry J, Schwartz PS, Hockenbery DM (2006) Small-molecule inhibitors of Bcl-2. Curr Opin Investig Drugs 7:1077–1084

    PubMed  CAS  Google Scholar 

  21. Mohammad RM, Mohamed AN, Smith MR, Jawadi NS, al-Katib A (1993) A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet 70:62–67

    Article  PubMed  CAS  Google Scholar 

  22. Gloeckner H, Jonuleit T, Lemke HD (2001) Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. J Immunol Methods 252:131–138

    Article  PubMed  CAS  Google Scholar 

  23. Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783

    Article  PubMed  CAS  Google Scholar 

  24. Hong C, Kim HA, Firestone GL, Bjeldanes LF (2002) 3,3′-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305

    Article  PubMed  CAS  Google Scholar 

  25. Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22:2643–2654

    Article  PubMed  CAS  Google Scholar 

  26. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98:3012–3017

    Article  PubMed  CAS  Google Scholar 

  27. Ozgen U, Savasan S, Buck S, Ravindranath Y (2000) Comparison of DiOC(6)(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry 42:74–78

    Article  PubMed  CAS  Google Scholar 

  28. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945

    Article  PubMed  CAS  Google Scholar 

  29. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  PubMed  CAS  Google Scholar 

  30. Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97:1378–1387

    Article  PubMed  CAS  Google Scholar 

  31. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032

    Article  PubMed  CAS  Google Scholar 

  32. von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247

    Article  Google Scholar 

  33. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  34. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  35. Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474

    Article  PubMed  CAS  Google Scholar 

  36. Lee SH, Ryu SY, Kim HB, Kim MY Chun YJ (2002) Induction of apoptosis by 3,4′-dimethoxy-5-hydroxystilbene in human promyeloid leukemic HL-60 cells. Planta Med 68:123–127

    Article  PubMed  CAS  Google Scholar 

  37. Kim JH, Ju EM, Lee DK, Hwang HJ (2002) Induction of apoptosis by momordin I in promyelocytic leukemia (HL-60) cells. Anticancer Res 22:1885–1889

    PubMed  CAS  Google Scholar 

  38. Hattori T, Ookawa N, Fujita R, Fukuchi K (2000) Heterodimerization of Bcl-2 and Bcl-X(L) with Bax and Bad in colorectal cancer. Acta Oncol 39:495–500

    Article  PubMed  CAS  Google Scholar 

  39. Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T (1999) NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 274:20415–20420

    Article  PubMed  CAS  Google Scholar 

  40. St Clair EG, Anderson SJ, Oltvai ZN (1997) Bcl-2 counters apoptosis by Bax heterodimerization-dependent and -independent mechanisms in the T-cell lineage. J Biol Chem 272:29347–29355

    Article  Google Scholar 

  41. Zha H, Aime-Sempe C, Sato T, Reed JC (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444

    Article  PubMed  CAS  Google Scholar 

  42. Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16:74–83

    Article  PubMed  CAS  Google Scholar 

  43. Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N, Pellecchia M (2006) Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci U S A 103:12602–12606

    Article  PubMed  CAS  Google Scholar 

  44. Ward MW, Rehm M, Duessmann H, Kacmar S, Concannon CG, Prehn JH (2006) Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J Biol Chem 281:5837–5844

    Article  PubMed  CAS  Google Scholar 

  45. Kumar S, Vaux DL (2002) Apoptosis. A cinderella caspase takes center stage. Science 297:1290–1291

    Article  PubMed  CAS  Google Scholar 

  46. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  PubMed  CAS  Google Scholar 

  47. Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM, Strasser A (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419:634–637

    Article  PubMed  CAS  Google Scholar 

  48. Goldie JH, Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44:3643–3653

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Department of Defense. The authors thank Dr. Karen Cresewell of the Lombardi Cancer Center, Georgetown University for operating FACScan and Ms. Karen Kreutzer of the University of Michigan Medical School for proofreading the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Ling, Y., Yang, CY. et al. A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. Ann Hematol 86, 471–481 (2007). https://doi.org/10.1007/s00277-007-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-007-0288-4

Keywords

Navigation