Skip to main content
Log in

Genomewide linkage analysis of soluble transferrin receptor plasma levels

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Genetic control of soluble transferrin receptor (sTfR) levels was demonstrated using family-based studies (GAIT, Genetic Analysis of Idiopathic Thrombophilia project); moreover, a genetic relationship was observed between sTfR and the risk for thrombosis, suggesting that these phenotypes shared genetic determinants. We studied the regions that control sTfR. To assess such regions, a full genome scan was carried out using 604 highly polymorphic deoxyribonucleic acid markers (resolution 7.3 cM) in 21 extended pedigrees (358 individuals). Then, a quantitative trait linkage analysis was performed using variance components methods. The genomewide scan linkage analysis showed two regions (quantitative trait locus or QTL) with significant limit of detection (LOD) scores (2q23.14, LOD score=2.64, nominal p=0.00024; 3q21.2, LOD score=1.94, nominal p=0.0014). There were no obvious candidate genes in these regions. In conclusion, this linkage analysis suggested the existence of a QTL in 2q23.14 that probably harbored a gene (or genes) controlling sTfR levels. Moreover, a second linkage signal was observed in 3q21.2; albeit the evidence for this second locus was lower. The next step will be to identify the gene(s) and its possible involvement in thrombosis and iron homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blangero J, Williams JT, Almasy L (2003) Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost 1:1391–1397

    Article  PubMed  CAS  Google Scholar 

  2. Gambaro G, Anglani F, D’Angelo A (2000) Association studies of genetic polymorphisms and complex disease. Lancet 355:308–311

    Article  PubMed  CAS  Google Scholar 

  3. Souto JC, Almasy L, Borrell M, Blanco-Vaca F, Mateo J, Soria JM, Coll I, Felices R, Stone W, Fontcuberta J, Blangero J (2000) Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet 67:1452–1459

    Article  PubMed  CAS  Google Scholar 

  4. Souto JC, Almasy L, Soria JM, Buil A, Stone W, Lathrop M, Blangero J, Fontcuberta J (2003) Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haemost 89:468–474

    PubMed  CAS  Google Scholar 

  5. Almasy L, Soria JM, Souto JC, Coll I, Bacq D, Faure A, Mateo J, Borrell M, Muñoz X, Sala N, Stone WH, Lathrop M, Fontcuberta J, Blangero J (2003) A quantitative trait locus influencing free plasma protein S levels on human chromosome 1q. Results from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Arterioscler Thromb Vasc Biol 23:508–511

    Article  PubMed  CAS  Google Scholar 

  6. Soria JM, Almasy L, Souto JC, Buil A, Martínez-Sánchez E, Mateo J, Borrell M, Stone WH, Lathrop M, Fontcuberta J, Blangero J (2003) A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 101:163–167

    Article  PubMed  CAS  Google Scholar 

  7. Soria JM, Almasy L, Souto JC, Bacq D, Buil A, Faure A, Martínez-Marchán E, Mateo J, Borrell M, Stone W, Lathrop M, Fontcuberta J, Blangero J (2002) A quantitative-trait locus in the human factor XII gene influences both plasma factor XII levels and susceptibility to thrombotic disease. Am J Hum Genet 70:567–574

    Article  PubMed  CAS  Google Scholar 

  8. Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H, Thorsteinsdottir U, Samani NJ, Gudmundsson G, Grant SF, Thorgeirsson G, Sveinbjornsdottir S, Valdimarsson EM, Matthiasson SE, Johannsson H, Gudmundsdottir O, Gurney ME, Sainz J, Thorhallsdottir M, Andresdottir M, Frigge ML, Topol EJ, Kong A, Gudnason V, Hakonarson H, Gulcher JR, Stefansson K (2004) The gene encoding 5-lypoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36:233–239

    Article  PubMed  CAS  Google Scholar 

  9. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  10. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    Article  PubMed  CAS  Google Scholar 

  11. Souto JC, Almasy L, Borrell M, Garí M, Martínez E, Mateo J, Stone WH, Blangero J, Fontcuberta J (2000) Genetic determinants of hemostasis phenotypes in Spanish families. Circulation 101:1546–1551

    PubMed  CAS  Google Scholar 

  12. Sullivan JL (1999) Iron and genetics of cardiovascular disease. Circulation 100:1260–1263

    PubMed  CAS  Google Scholar 

  13. Roest M, van der Schouw YT, de Valk B, Marx JJ, Tempelman MJ, de Groot PG, Sixma JJ, Banga JD (1999) Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular death in women. Circulation 100:1268–1273

    PubMed  CAS  Google Scholar 

  14. Souto JC, Almasy L, Borrell M, Stone WH, Blaco-Vaca F, Soria JM, Blangero J, Fontcuberta J (2002) Thromboplastin–thrombomodulin-mediated time and serum folate levels are genetically correlated with risk of thromboembolic disease: results from the GAIT project. Thromb Haemost 87:68–73

    PubMed  CAS  Google Scholar 

  15. Souto JC, Remacha A, Buil A, Almasy L, Blangero J, Fontcuberta J (2003) Genetic determinants of iron metabolism plasma phenotypes and their relationship with risk of thrombosis. Haematologica 88:1436–1438

    PubMed  CAS  Google Scholar 

  16. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  17. Souto JC, Almasy L, Blangero J, Stone W, Borrell M, Urrutia T, Mateo J, Fontcuberta J (2001) Genetic regulation of plasma levels of vitamin-K dependent proteins involved in hemostasis. Thromb Haemost 85:88–92

    PubMed  CAS  Google Scholar 

  18. Whitfield JB, Martin NG (1984) The effects of inheritance on constituents of plasma: a twin study on some biochemical variables. Ann Clin Biochem 21:176–183

    PubMed  CAS  Google Scholar 

  19. Moyo VM, Mandishona E, Hasstedt SJ, Gangaidzo IT, Gomo ZAR, Khumalo H, Saungweme T, Kiire CF, Paterson AC, Bloom P, Mac Phail AP, Rouault T, Gordeuk VR (1998) Evidence of genetic transmission in African iron overload. Blood 91:1076–1082

    PubMed  CAS  Google Scholar 

  20. Hetet G, Devaux I, Soufir N, Grandchamp B, Beaumont C (2003) Molecular analyses of patients with hyperferritinemia and normal serum iron values reveal both L ferritin IRE and 3 new ferroportin (slc11A3) mutations. Blood 102:1904–1910

    Article  PubMed  CAS  Google Scholar 

  21. Visapaa I, Fellman V, Vesa J, Dasvarma A, Hutton JL, Kumar V, Payne GS, Makarow M, Van Coster R, Taylor RW, Turnbull DM, Suomalainen A, Peltonen L (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876

    Article  PubMed  Google Scholar 

  22. Esparza-Gordillo J, Soria JM, Buil A, Souto JC, Almasy L, Blangero J, Fontcuberta J, de Cordoba SR (2003) Genetic determinants of variation in the plasma levels of the C4b-binding protein (C4BP) in Spanish families. Immunogenetics 54:862–866

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Ministerio de Sanidad y Consumo (Spain) (grant FIS PI 20506), Fundació “la Caixa,” and Fundació d’Investigació Sant Pau for supporting this study. J. M. Soria and A. Buil were supported by FIS 99/3048 and FIS 01/A046, respectively. Statistical genetic analysis was supported by US National Institutes of Health grants MH59490 and HL70751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel F. Remacha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remacha, A.F., Souto, J.C., Soria, J.M. et al. Genomewide linkage analysis of soluble transferrin receptor plasma levels. Ann Hematol 85, 25–28 (2006). https://doi.org/10.1007/s00277-005-1092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-005-1092-7

Keywords

Navigation