Skip to main content
Log in

Reappraisal of the types of trigeminal porus and importance in surgical applications

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Objective

The detailed information regarding the types of trigeminal porus (TP) and related surgical approach is lacking in the literature. Therefore, we performed this study to elucidate further the types of TP and the relationships with critical surgical landmarks in the skull base.

Methods

The study was performed on 19 formalin-fixed cadavers of the cranial base (52.6% male, n = 10; 47.4% female, n = 9) on both sides. Calculations were made of the vertical dimension (VD), horizontal dimension (HD), and types of TP, the thickness of the TP, the HD and VD of the internal acoustic meatus, the distance between the TP-IAM, the thickness of the ossifying tissue that forms the TP, the trigeminal nerve (CN V) in both types and the distance between the CN V-VI.

Results

The elliptical (42.1% left, 36.8% right), oval (52.6% left, 36.8% right) and slit-like (5.3% right) types of TP were detected (X2 = 11.722). The HD of the TP was, on average, 8.02 mm (female) and 9.2 mm (male) on the right side, and 8.26 mm (female) and 8.81 mm (male) on the left side. The VD of the TP was, on average, 1.99 mm (female) and 2.65 mm (male) on the right side, and 2.42 mm (female) and 2.94 mm (male) on the left side.

Conclusions

In our study, ellipse and slit-like types of TP are taken into account in order to plan the surgical approaches to remove or prevent the extension of tumors. A combined surgical technique is recommended to reach the TP easily without damaging the nearby surgical structures during surgery. The oval type of TP allows a wide range of movements, so it is more advantageous in skull base surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

Basilar artery

CN:

Cranial nerve

CN V:

Trigeminal nerve

CN VI:

Abducens nerve

CN VII:

Facial nerve

CN VIII:

Vestibulocochlear nerve

CN IX:

Glossopharyngeal nerve

CN X:

Vagus nerve

CN XI:

Accessory nerve

IAM:

Internal acoustic meatus

JF:

Jugular foramen

MC:

Meckel’s cave

MCF:

Middle cranial fossa

OT:

Ossified tissue

rTEM:

Relative technical error of measurement

R:

Constant of reliability

SPSS:

Statistical Package for the Social Sciences

TEM:

Technical error of measurement

TP:

Trigeminal porus

VA:

Vertebral artery

References

  1. Ajayi NO, Lazarus L, Satyapal KS (2013) Trigeminal cave and ganglion: an anatomical review. Int J Morphol 31:1444–1448. https://doi.org/10.4067/s0717-95022013000400047

    Article  Google Scholar 

  2. Akdag UB, Ogut E, Barut C (2020) Intraforaminal dural septations of the jugular foramen: a cadaveric study. World Neurosurg 141:e718–e727. https://doi.org/10.1016/j.wneu.2020.05.271

    Article  PubMed  Google Scholar 

  3. Al-Mefty O, Ayoubi S, Gaber E (2002) Trigeminal schwannomas: removal of dumbbell-shaped tumors through the expanded Meckel cave and outcomes of cranial nerve function. J Neurosurg 96:453–463. https://doi.org/10.3171/jns.2002.96.3.0453

    Article  PubMed  Google Scholar 

  4. Arslan M, Deda H, Avci E, Elhan A, Tekdemir I, Tubbs RS, Silav G, Yilmaz E, Baskaya MK (2012) Anatomy of Meckel’s cave and the trigeminal ganglion: anatomical landmarks for a safer approach to them. Turk Neurosurg 22:317–323. https://doi.org/10.5137/1019-5149.JTN.5213-11.1

    Article  PubMed  Google Scholar 

  5. Barut C, Dogan A, Buyukuysal MC (2014) Anthropometric aspects of hand morphology in relation to sex and to body mass in a Turkish population sample. Homo 65:338–348. https://doi.org/10.1016/j.jchb.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Barut C, Ertilav H (2011) Guidelines for standard photography in gross and clinical anatomy. Anat Sci Educ 4:348–356. https://doi.org/10.1002/ase.247

    Article  PubMed  Google Scholar 

  7. Barut C, Sevinc O, Sumbuloglu V (2011) Evaluation of hand asymmetry in relation to hand preference. Coll Antropol 35:1119–1124

    PubMed  Google Scholar 

  8. Bernard F, Mercier P, Sindou M (2019) Morphological and functional anatomy of the trigeminal triangular plexus as an anatomical entity: a systematic review. Surg Radiol Anat 41:625–637. https://doi.org/10.1007/s00276-019-02217-8

    Article  PubMed  Google Scholar 

  9. Borges A, Casselman J (2010) Imaging the trigeminal nerve. Eur J Radiol 74:323–340. https://doi.org/10.1016/j.ejrad.2010.02.006

    Article  PubMed  Google Scholar 

  10. Brinzeu A, Dumot C, Sindou M (2018) Role of the petrous ridge and angulation of the trigeminal nerve in the pathogenesis of trigeminal neuralgia, with implications for microvascular decompression. Acta Neurochir 160:971–976. https://doi.org/10.1007/s00701-018-3468-1

    Article  PubMed  Google Scholar 

  11. Ciolkowski M, Sharifi M, Krajewski P, Ciszek B (2006) Topography and morphometry of the porus trigeminus. Neurol Neurochir Pol 40:173–178

    PubMed  Google Scholar 

  12. Day JD, Kellogg JX, Fukushima T, Giannotta SL (1994) Microsurgical anatomy of the inner surface of the petrous bone: neuroradiological and morphometric analysis as an adjunct to the retrosigmoid transmeatal approach. Neurosurgery 34:1003–1008. https://doi.org/10.1227/00006123-199406000-00008

    Article  CAS  PubMed  Google Scholar 

  13. Du R, Binder DK, Halbach V, Fischbein N, Barbaro NM (2003) Trigeminal neuralgia in a patient with a dural arteriovenous fistula in Meckel’s cave: case report. Neurosurgery 53:216–221. https://doi.org/10.1227/01.neu.0000069535.42897.1f (discussion 221)

    Article  PubMed  Google Scholar 

  14. Dupont G, Altafulla J, Iwanaga J, Watanabe K, Tubbs RS (2019) Ossification of the roof of the porus trigeminus with duplicated abducens nerve. Anat Cell Biol 52:211–213. https://doi.org/10.5115/acb.2019.52.2.211

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gerganov V, Samii M (2013) Surgery of cerebellopontine lesions. Springer, Heidelberg

    Google Scholar 

  16. Goto R, Mascie-Taylor CG (2007) Precision of measurement as a component of human variation. J Physiol Anthropol 26:253–256. https://doi.org/10.2114/jpa2.26.253

    Article  PubMed  Google Scholar 

  17. Hughes MA, Frederickson AM, Branstetter BF, Zhu X, Sekula RF Jr (2016) MRI of the trigeminal nerve in patients with trigeminal neuralgia secondary to vascular compression. AJR Am J Roentgenol 206:595–600. https://doi.org/10.2214/AJR.14.14156

    Article  PubMed  Google Scholar 

  18. Janjua RM, Al-Mefty O, Densler DW, Shields CB (2008) Dural relationships of Meckel cave and lateral wall of the cavernous sinus. Neurosurg Focus 25:E2. https://doi.org/10.3171/FOC.2008.25.12.E2

    Article  PubMed  Google Scholar 

  19. Kaufman B, Bellon EM (1973) The trigeminal nerve cistern. Radiology 108:597–602. https://doi.org/10.1148/108.3.597

    Article  CAS  PubMed  Google Scholar 

  20. Kehrli P, Maillot C, Wolff M-J (2016) Anatomy and embryology of the trigeminal nerve and its branches in the parasellar area. Neurol Res 19:57–65. https://doi.org/10.1080/01616412.1997.11740773

    Article  Google Scholar 

  21. Kemper CJ, Schwerdtfeger A (2009) Comparing indirect methods of digit ratio (2D:4D) measurement. Am J Hum Biol 21:188–191. https://doi.org/10.1002/ajhb.20843

    Article  PubMed  Google Scholar 

  22. Kimball D, Kimball H, Matusz P, Tubbs RS, Loukas M, Cohen-Gadol AA (2015) Ossification of the posterior petroclinoid dural fold: a cadaveric study with neurosurgical significance. J Neurol Surg B Skull Base 76:272–277. https://doi.org/10.1055/s-0034-1396598

    Article  PubMed  PubMed Central  Google Scholar 

  23. NdOD Konan L, Mbende A, Kouakou F, Velut S (2019) Microanatomy of the trigeminal cavum: Meckel’s cave. Anat J Afr 8:1330–1335

    Google Scholar 

  24. Malhotra A, Tu L, Kalra VB, Wu X, Mian A, Mangla R, Michaelides E, Sanelli P, Gandhi D (2018) Neuroimaging of Meckel’s cave in normal and disease conditions. Insights Imaging 9:499–510. https://doi.org/10.1007/s13244-018-0604-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malhotra A, Tu L, Kalra VB, Wu X, Mian A, Mangla R, Michaelides E, Sanelli P, Gandhi D (2018) Neuroimaging of Meckel’s cave in normal and disease conditions. Insights into Imaging 9:499–510. https://doi.org/10.1007/s13244-018-0604-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nestor N, Ritz B, Hunter D, Zdilla M (2019) The size and shape of the porus trigeminus: ımplications for trigeminal neuralgia procedures. FASEB J 33:768.763-768.763. https://doi.org/10.1096/fasebj.2019.33.1_supplement.768.3

    Article  Google Scholar 

  27. Ogiwara T, Goto T, Kusano Y, Kuroiwa M, Kiuchi T, Kodama K, Takemae T, Hongo K (2015) Subtemporal transtentorial approach for recurrent trigeminal neuralgia after microvascular decompression via the lateral suboccipital approach: case report. J Neurosurg 122:1429–1432. https://doi.org/10.3171/2014.10.jns132643

    Article  PubMed  Google Scholar 

  28. Ozer CM, Oz II, Serifoglu I, Buyukuysal MC, Barut C (2016) Evaluation of eyeball and orbit in relation to gender and age. J Craniofac Surg 27:e793–e800. https://doi.org/10.1097/SCS.0000000000003133

    Article  PubMed  Google Scholar 

  29. Razek AA, Huang BY (2012) Lesions of the petrous apex: classification and findings at CT and MR ımaging. RadioGraphics 32:151–173. https://doi.org/10.1148/rg.321105758

    Article  PubMed  Google Scholar 

  30. Sabanci PA, Batay F, Civelek E, Al Mefty O, Husain M, Abdulrauf SI, Karasu A (2011) Meckel’s cave. World Neurosurg 76:335–341. https://doi.org/10.1016/j.wneu.2011.03.037 (discussion 266−337)

    Article  PubMed  Google Scholar 

  31. Slater PW, Welling DB, Goodman JH, Miner ME (1998) Middle fossa transpetrosal approach for petroclival and brainstem tumors. Laryngoscope 108:1408–1412. https://doi.org/10.1097/00005537-199809000-00030

    Article  CAS  PubMed  Google Scholar 

  32. Stomfai S, Ahrens W, Bammann K, Kovacs E, Marild S, Michels N, Moreno LA, Pohlabeln H, Siani A, Tornaritis M, Veidebaum T, Molnar D, Consortium I (2011) Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes (Lond) 35(Suppl 1):S45–S51. https://doi.org/10.1038/ijo.2011.34

    Article  Google Scholar 

  33. Truong HQ, Sun X, Celtikci E, Borghei-Razavi H, Wang EW, Snyderman CH, Gardner PA, Fernandez-Miranda JC (2018) Endoscopic anterior transmaxillary “transalisphenoid” approach to Meckel’s cave and the middle cranial fossa: an anatomical study and clinical application. J Neurosurg 130:227–237. https://doi.org/10.3171/2017.8.JNS171308

    Article  PubMed  Google Scholar 

  34. Tubbs RS, Rizk E, Shoja MM, Loukas M, Barbaro NM, Spinner RJ (2015) Pain, treatment, ınjury, disease and future directions. In: Nerves and nerve ınjuries, vol 2, 1st edn. Elsevier, Amsterdam. https://doi.org/10.1016/C2014-0-03700-8

    Chapter  Google Scholar 

  35. Tubbs RS, Mortazavi MM, Krishnamurthy S, Verma K, Griessenauer CJ, Cohen-Gadol AA (2013) The relationship between the superior petrosal sinus and the porus trigeminus: an anatomical study. J Neurosurg 119:1221–1225. https://doi.org/10.3171/2013.4.jns122062

    Article  PubMed  Google Scholar 

  36. Tubbs RS, Salter EG, Oakes WJ (2006) Bony anomaly of Meckel’s cave. Clin Anat 19:75–77. https://doi.org/10.1002/ca.20163

    Article  PubMed  Google Scholar 

  37. Ulijaszek T, Lourie J (1994) Intra- and inter-observer error in anthropometric measurement. Anthropometry: the ındividual and the population (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511600500.004

    Book  Google Scholar 

  38. Weinberg SM, Scott NM, Neiswanger K, Marazita ML (2005) Intraobserver error associated with measurements of the hand. Am J Hum Biol 17:368–371. https://doi.org/10.1002/ajhb.20129

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

CB and EO contributed to the conception and design of the study. CB, EO and KA were involved in data collection and acquisition of data. CB, EO and KA contributed to the data management and interpretation of data. CB analyzed the data. CB and EO participated in drafting the article and revising it critically for valuable intellectual content and the writing of the manuscript. All authors have read the final approval of the version to be submitted.

Corresponding author

Correspondence to Cagatay Barut.

Ethics declarations

Conflict of interest

The authors declare that the article content was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were conducted under the ethical standards of the ethics committee of Bahcesehir University Faculty of Medicine and in conformity with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogut, E., Armagan, K. & Barut, C. Reappraisal of the types of trigeminal porus and importance in surgical applications. Surg Radiol Anat 43, 1169–1178 (2021). https://doi.org/10.1007/s00276-020-02651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02651-z

Keywords

Navigation