Skip to main content

Advertisement

Log in

Distribution of sensory nerves supplying the knee joint capsule and implications for genicular blockade and radiofrequency ablation: an anatomical study

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Background

Despite their emerging therapeutic relevance, there are many discrepancies in anatomical description and terminology of the articular nerves supplying the human knee capsule. This cadaveric study aimed to determine their origin, trajectory, relationship and landmarks for therapeutic purpose.

Methods

We dissected 21 lower limbs from 21 cadavers, to investigate the anatomical distribution of all the articular nerves supplying the knee joint capsule. We identified constant genicular nerves according to their anatomical landmarks at their entering point to knee capsule and inserted Kirschner wires through the nerves in underlying bone at those target points. Measurements were taken, and both antero-posterior and lateral radiographs were obtained.

Results

The nerve to vastus medialis, saphenous nerve, anterior branch of obturator nerve and a branch from sciatic nerve provide substantial innervation to the medial knee capsule and retinaculum. The sciatic nerve and the nerve to the vastus lateralis supply sensory innervation to the supero-lateral aspect of the knee joint while the fibular nerve supplies its infero-lateral quadrant. Tibial nerve and posterior branch of obturator nerve supply posterior aspect of knee capsule. According to our findings, five constant genicular nerves with accurate landmarks could be targeted for therapeutic purpose.

Conclusion

The pattern of distribution of sensitive nerves supplying the knee joint capsule allows accurate and safe targeting of five constant genicular nerves for therapeutic purpose. This study provides robust anatomical foundations for genicular nerve blockade and radiofrequency ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackmann T, Von During M, Teske W, Ackermann O, Muller P, Von Schulze Pellengahr C (2014) Anatomy of the infrapatellar branch in relation to skin incisions and as the basis to treat neuropathic pain by cryodenervation. Pain Phys 17(3):E339–E348

    Google Scholar 

  2. Bendtsen TF, Moriggl B, Chan V, Borglum J (2016) The optimal analgesic block for total knee arthroplasty. Reg Anesth Pain Med 41(6):711–719

    Article  CAS  Google Scholar 

  3. Burckett-St Laurant D, Peng P, Giron Arango L, Niazi AU, Chan VW, Agur A, Perlas A (2016) The nerves of the adductor canal and the innervation of the knee: an anatomic study. Reg Anesth Pain Med 41(3):321–327

    Article  Google Scholar 

  4. Choi WJ, Hwang SJ, Song JG, Leem JG, Kang YU, Park PH, Shin JW (2011) Radiofrequency treatment relieves chronic knee osteoarthritis pain: a double-blind randomized controlled trial. Pain 152(3):481–487

    Article  Google Scholar 

  5. Dellon AL (2014) Partial knee joint denervation for knee pain: a review. Orthop Muscul Syst 3:167

    Article  Google Scholar 

  6. Drüner L (1927) Ueber die Beteiligung des nervus obturatorius an der Innervation des Kniegelenks. Z F Anat U Entwick-I 82:388

    Article  Google Scholar 

  7. Elazab EEB (2017) Morphological study and relations of the fascia vasto-adductoria. Surg Radiol Anat 39(10):1085–1095

    Article  Google Scholar 

  8. Franco CD, Buvanendran A, Petersohn JD, Menzies RD, Menzies LP (2015) Innervation of the anterior capsule of the human knee: implications for radiofrequency ablation. Reg Anesth Pain Med 40(4):363–368

    Article  Google Scholar 

  9. Gardner E (1948) The innervation of the knee joint. Anat Rec 101:109

    Article  CAS  Google Scholar 

  10. Henry BM, Tomaszewski KA, Pekala PA, Ramakrishnan PK, Taterra D, Saganiak K, Mizia E, Walocha JA (2017) The variable emergence of the infrapatellar branch of the saphenous nerve. J Knee Surg 30(6):585–593

    Article  Google Scholar 

  11. Hilton J (2009) The classic: on rest and pain: lecture XIV. Clin Orthop Relat Res 467(9):2208–2214

    Article  Google Scholar 

  12. Hirasawa Y, Okajima S, Ohta M, Tokioka T (2000) Nerve distribution to the human knee joint: anatomical and immunohistochemical study. Int Orthop 24(1):1–4

    Article  CAS  Google Scholar 

  13. Horner G, Dellon AL (1994) Innervation of the human knee joint and implications for surgery. Clin Orthop Relat Res 301:221–226

    Google Scholar 

  14. Hu E, Preciado J, Dasa V, Mussell J (2015) Development and validation of a new method for locating patella sensory nerves for the treatment of inferior and superior knee pain. J Exp Orthop 2(1):16

    Article  Google Scholar 

  15. Jamison DE, Cohen SP (2018) Radiofrequency techniques to treat chronic knee pain: a comprehensive review of anatomy, effectiveness, treatment parameters, and patient selection. J Pain Res 11:1879–1888

    Article  CAS  Google Scholar 

  16. Jeletsky A (1931) On the innervation of the capsule and epiphysis of the knee joint. Vestn Khir 22:74

    Google Scholar 

  17. Kalthur SG, Sumalatha S, Nair N, Pandey AK, Sequeria S, Shobha L (2015) Anatomic study of infrapatellar branch of saphenous nerve in male cadavers. Ir J Med Sci 184(1):201–206

    Article  CAS  Google Scholar 

  18. Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve supply of the human knee and its functional importance. Am J Sports Med 10(6):329–335

    Article  CAS  Google Scholar 

  19. Koch G, Kling A, Ramamurthy N, Edalat F, Cazzato RL, Kahn JL, Garnon J, Clavert P (2017) Anatomical risk evaluation of iatrogenic injury to the infrapatellar branch of the saphenous nerve during medial meniscus arthroscopic surgery. Surg Radiol Anat 39(6):611–618

    Article  Google Scholar 

  20. Macalou D, Trueck S, Meuret P, Heck M, Vial F, Ouologuem S, Capdevila X, Virion JM, Bouaziz H (2004) Postoperative analgesia after total knee replacement: the effect of an obturator nerve block added to the femoral 3-in-1 nerve block. Anesth Analg 99(1):251–254

    Article  CAS  Google Scholar 

  21. McCormick ZL, Korn M, Reddy R, Marcolina A, Dayanim D, Mattie R, Cushman D, Bhave M, McCarthy RJ, Khan D, Nagpal G, Walega DR (2017) Cooled radiofrequency ablation of the genicular nerves for chronic pain due to knee osteoarthritis: six-month outcomes. Pain Med 18(9):1631–1641

    Article  Google Scholar 

  22. Orduna Valls JM, Vallejo R, Lopez Pais P, Soto E, Torres Rodriguez D, Cedeno DL, Tornero Tornero C, Quintans Rodriguez M, Baluja Gonzalez A, Alvarez Escudero J (2017) Anatomic and ultrasonographic evaluation of the knee sensory innervation: a cadaveric study to determine anatomic targets in the treatment of chronic knee pain. Reg Anesth Pain Med 42(1):90–98

    Article  Google Scholar 

  23. Qudsi-Sinclair S, Borras-Rubio E, Abellan-Guillen JF, Padilla Del Rey ML, Ruiz-Merino G (2017) A comparison of genicular nerve treatment using either radiofrequency or analgesic block with corticosteroid for pain after a total knee arthroplasty: a double-blind, randomized clinical study. Pain Pract 17(5):578–588

    Article  Google Scholar 

  24. Radnovich R, Scott D, Patel AT, Olson R, Dasa V, Segal N, Lane NE, Shrock K, Naranjo J, Darr K, Surowitz R, Choo J, Valadie A, Harrell R, Wei N, Metyas S (2017) Cryoneurolysis to treat the pain and symptoms of knee osteoarthritis: a multicenter, randomized, double-blind, sham-controlled trial. Osteoarthr Cartil 25(8):1247–1256

    Article  CAS  Google Scholar 

  25. Sutaria RG, Lee SW, Kim SY, Howe R, Downie SA (2017) Localization of the lateral retinacular nerve for diagnostic and therapeutic nerve block for lateral knee pain: a cadaveric study. Pm r 9(2):149–153

    Article  Google Scholar 

  26. Tran J, Peng PWH, Lam K, Baig E, Agur AMR, Gofeld M (2018) Anatomical study of the innervation of anterior knee joint capsule: implication for image-guided intervention. Reg Anesth Pain Med 43(4):407–414

    Article  Google Scholar 

  27. Yasar E, Kesikburun S, Kilic C, Guzelkucuk U, Yazar F, Tan AK (2015) Accuracy of ultrasound-guided genicular nerve block: a cadaveric study. Pain Phys 18(5):E899–E904

    Google Scholar 

Download references

Acknowledgements

The authors thank the donors of the cadavers used in this study and their families.

Author information

Authors and Affiliations

Authors

Contributions

LF: protocol development, data collection, data analysis, manuscript writing. CB: protocol development, data analysis, manuscript revision. J-EKK: data collection, manuscript revision. MC: manuscript revision. CD: manuscript revision. ET: manuscript revision. OC: project development, data analysis, manuscript revision.

Corresponding author

Correspondence to Loïc Fonkoué.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any study with human participants performed by any of the authors, but it involved human cadavers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonkoué, L., Behets, C., Kouassi, JÉ.K. et al. Distribution of sensory nerves supplying the knee joint capsule and implications for genicular blockade and radiofrequency ablation: an anatomical study. Surg Radiol Anat 41, 1461–1471 (2019). https://doi.org/10.1007/s00276-019-02291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-019-02291-y

Keywords

Navigation