Skip to main content
Log in

Femoral curvature variability in modern humans using three-dimensional quadric surface fitting

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Introduction

This study analysed femoral curvature in a population from Belgium in conjunction with other morphological characteristics by the use of three-dimensional (3D) quadric surfaces (QS) modelled from the bone surface.

Methods

3D models were created from computed tomography data of 75 femoral modern human bones. Anatomical landmarks (ALs) were palpated in specific bony areas of the femur (shaft, condyles, neck and head). QS were then created from the surface vertices which enclose these ALs. The diaphyseal shaft was divided into five QS shapes to analyse curvature in different parts of the shaft.

Results

Femoral bending differs in different parts of the diaphyseal shaft. The greatest degree of curvature was found in the distal shaft (mean 4.5° range 0.2°–10°) followed by the proximal (mean 4.4° range 1.5°–10.2°), proximal intermediate (mean 3.7° range 0.9°–7.9°) and distal intermediate (mean 1.8° range 0.2°–5.6°) shaft sections. The proximal and distal angles were significantly more bowed than the intermediate proximal and the intermediate distal angle. There was no significant difference between the proximal and distal angle. No significant correlations were found between morphological characteristics and femoral curvature. An extremely large variability of femoral curvature with several bones displaying very high or low degrees of femoral curvature was also found.

Conclusion

3D QS fitting enables the creation of accurate models which can discriminate between different patterns in similar curvatures and demonstrates there is a clear difference between curvature in different parts of the shaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruns W, Bruce M, Prescott G, Maffulli N (2002) Temporal trends in femoral curvature and length in medieval and modern Scotland. Am J Phys Anthropol 119(3):224–230. doi:10.1002/ajpa.10113

    Article  PubMed  Google Scholar 

  2. Buford WL Jr, Turnbow BJ, Gugala Z, Lindsey RW (2014) Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma 28(1):10–16. doi:10.1097/bot.0000000000000019

    Article  PubMed  Google Scholar 

  3. Chang SM, Song DL, Ma Z, Tao YL, Chen WL, Zhang LZ, Wang X (2014) Mismatch of the short straight cephalomedullary nail (PFNA-II) with the anterior bow of the femur in an Asian population. J Orthop Trauma 28(1):17–22. doi:10.1097/bot.0000000000000022

    Article  PubMed  Google Scholar 

  4. Chantarapanich N, Mahaisavariya B, Siribodhi P, Kriskrai S (2011) Geometric mismatch analysis of retrograde nail in the Asian femur. Surg Radiol Anat 33(9):755–761

    Article  PubMed  Google Scholar 

  5. Chung BJ, Kang YG, Chang CB, Kim SJ, Kim TK (2009) Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA. Clin Orthop Relat Res 467(9):2403–2413. doi:10.1007/s11999-009-0762-5

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cooke TD, Sled EA, Scudamore RA (2007) Frontal plane knee alignment: a call for standardized measurement. J Rheumatol 34(9):1796–1801

    PubMed  Google Scholar 

  7. De Groote I (2011) Femoral curvature in Neanderthals and modern humans: a 3D geometric morphometric analysis. J Hum Evol 60(5):540–548. doi:10.1016/j.jhevol.2010.09.009

    Article  PubMed  Google Scholar 

  8. De Groote I, Lockwood CA, Aiello LC (2010) Technical note: A new method for measuring long bone curvature using 3D landmarks and semi-landmarks. Am J Phys Anthropol 119 141 (4):658-664. doi:10.1002/ajpa.21225

  9. Eberly D (2008) Distance from a point to an ellipsoid. (http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf). Accessed 15 June 2010

  10. Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ (2004) Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma 18(7):410–415

    Article  PubMed  Google Scholar 

  11. Gilbert BM (1976) Anterior femoral curvature: Its probable basis and utility as a criterion of racial assessment. Am J Phys Anthropol 45(3):601–604. doi:10.1002/ajpa.1330450326

    Article  CAS  PubMed  Google Scholar 

  12. Harma A, Germen B, Karakas H, Elmali N, Inan M (2005) The comparison of femoral curves and curves of contemporary intramedullary nails. Surg Radiol Anat 27(6):502–506

    Article  PubMed  Google Scholar 

  13. Harper MC, Carson WL (1987) Curvature of the femur and the proximal entry point for an intramedullary rod. Clin Orthop Relat Res 220:155–161

    PubMed  Google Scholar 

  14. Jacq JJ, Roux C (2003) Geodesic morphometry with applications to 3-D morpho-functional anatomy. Proc IEEE 91(10):1680–1698. doi:10.1109/JPROC.2003.817863

    Article  Google Scholar 

  15. Karakas H, Harma A (2012) Femoral shaft bowing with age: a digital radiological study of anatolian caucasian adults. Diagn Interv Radiol 14:29–32

    Google Scholar 

  16. Lu Z-H, Yu J-K, Chen L-X, Gong X, Wang Y-J, Leung KKM (2012) Computed tomographic measurement of gender differences in bowing of the sagittal femoral shaft in persons older than 50 years. J Arthroplasty 27(6):1216–1220. doi:10.1016/j.arth.2011.12.024

    Article  PubMed  Google Scholar 

  17. Murray PDF (1936) Bones. A study of the development and structure of the vertebrate skeleton. Cambridge University Press, London

    Google Scholar 

  18. Murray PDF, Selby D (1930) Intrinsic and extrinsic factors in the primary development of the skeleton. Roux Arch 122:629–662

    Article  Google Scholar 

  19. Ostrum RF, Levy MS (2005) Penetration of the distal femoral anterior cortex during intramedullary nailing for subtrochanteric fractures: a report of three cases. J Orthop Trauma 19(9):656–660

    Article  PubMed  Google Scholar 

  20. Scolaro JA, Endress C, Mehta S (2013) Prevention of cortical breach during placement of an antegrade intramedullary femoral nail. Orthopedics 36(9):688–692

    Article  PubMed  Google Scholar 

  21. Seo JG, Kim BK, Moon YW, Kim JH, Yoon BH, Ahn TK, Lee DH (2009) Bony landmarks for determining the mechanical axis of the femur in the sagittal plane during total knee arthroplasty. Clin Orthop Surg 1(3):128–131. doi:10.4055/cios.2009.1.3.128

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shackelford LL, Trinkaus E (2002) Late pleistocene human femoral diaphyseal curvature. Am J Phys Anthropol 119(118):359–370

    Article  Google Scholar 

  23. Sholukha V, Chapman T, Salvia P, Moiseev F, Euran F, Rooze M (2010) Femur shape prediction by multiple regression based on quadric surface fitting. J Biomech 44(4):712–718. doi:10.1016/j.jbiomech.2010.10.039

    Article  PubMed  Google Scholar 

  24. Stewart TD (1962) Anterior femoral curvature: its utility for race identification. Hum Biol 34:49–62

    CAS  PubMed  Google Scholar 

  25. Tang W, Chiu K, Kwan M, Ng T, Yau W (2005) Sagittal bowing of the distal femur in Chinese patients who require total knee arthroplasty. J Orthop Res 23(1):41–45

    Article  CAS  PubMed  Google Scholar 

  26. Twiesselmann F (1961) Le fémur néanderthalien de Fond-de-Forêt(Province de Liège). Mém Inst Roy Sci Nat, Belg 148

    Google Scholar 

  27. Van Sint Jan S (2007) Color atlas of skeletal landmark definitions: guidelines for reproducible manual and virtual palpations. Churchill Livingstone Elsevier, Edinburgh

    Google Scholar 

  28. Walensky NA (1965) A study of anterior femoral curvature in man. Anat Rec 151(4):559–570. doi:10.1002/ar.1091510406

    Article  CAS  PubMed  Google Scholar 

  29. Wolff J (1986) The law of bone remodelling (trans: Maquet P, Furlong R). Springer, New York

    Book  Google Scholar 

  30. Yehyawi TM, Callaghan JJ, Pedersen DR, O’Rourke MR, Liu SS (2007) Variances in sagittal femoral shaft bowing in patients undergoing TKA. Clin Orthop Relat Res 464:99–104

    PubMed  Google Scholar 

  31. Zhang S, Zhang K, Wang Y, Feng W, Wang B, Yu B (2013) Using three-dimensional computational modeling to compare the geometrical fitness of two kinds of proximal femoral intramedullary nail for Chinese femur. Sci World J 2013:978485. doi:10.1155/2013/9784851

    Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Hakim Bajou (LABO, ULB) for his technical assistance in scanning the bone material. We thank François Euran for his assistance in palpation of landmarks. We thank Bruno Bonnechère for his assistance with statistics. The research was performed as part of a doctorate financed by the Belgian Federal Public Planning Service Science Policy (BELSPO, Action 2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Chapman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, T., Sholukha, V., Semal, P. et al. Femoral curvature variability in modern humans using three-dimensional quadric surface fitting. Surg Radiol Anat 37, 1169–1177 (2015). https://doi.org/10.1007/s00276-015-1495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-015-1495-7

Keywords

Navigation