Skip to main content
Log in

The morphological characteristics of corticostriatal and thalamostriatal neurons and their intrastriatal terminals in rats

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The glutamatergic projection from the cerebral cortex and the thalamus extensively innervates the neostriatal neurons. However, some conflicts in the published literatures about cortical and thalamic intrastriatal synaptic terminals still need to be resolved. The present study intends to further elucidate the morphological characteristics of these two types of the terminals and their neurons.

Methods

The corticostriatal and thalamostriatal terminals were immunolabeled for vesicular glutamate transporter type 1 (VGluT1) and 2 (VGluT2), respectively, and their neurons were retrograde labeled by biotinylated dextran amine 3,000 molecular weight (BDA3k) injection into the dorsolateral striatum of rats. The characteristics of the corticostriatal and thalamostriatal terminals were observed at the LM and EM levels, and the data were statistically analyzed with SPSS10.0 software.

Results

We observed that 63.53% of VGluT1+ terminals synapsed on dendritic spines, which was different from VGluT2+ terminals with the equal percentage of synapses on spines and dendrites (14.88 and 17.86%, respectively). Notably, VGluT1+ axospinous synaptic terminals were remarkably larger than VGluT2+ axospinous synaptic terminals. Terminal size-frequency distribution analysis showed that VGluT1+ terminals were within the size ranges of 0.4–0.5 and 0.8–0.9 μm, and VGluT2+ terminals were in the ranges of 0.4–0.5 and 0.6–0.7 μm. Perforated-postsynaptic densities (-PSDs) were more frequently found in VGluT1+ axospinous synaptic terminals than in VGluT2+ axospinous terminals. Furthermore, BDA3k-labeled corticostrital neurons were larger in perikaryal diameter than the thalamostriatal neurons, and they were also categorized as the two main populations based on their size-frequency distribution.

Conclusions

The morphological characteristics of corticostriatal and thalamostriatal terminals and neurons have implications for understanding the roles of synaptic plasticity in adaptive motor control by the basal ganglia, and they have facilitations for understanding the complexities of basal ganglia function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albin RL, Gilman S (1989) Parasagittal zonation of GABA-B receptors in molecular layer of rat cerebellum. Eur J Pharmacol 173(1):113–114

    Article  PubMed  CAS  Google Scholar 

  2. Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61(3):231–265

    Article  PubMed  CAS  Google Scholar 

  3. Dhanrajan TM, Lynch MA, Kelly A, Popov VI, Rusakov DA, Stewart MG (2004) Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone. Hippocampus 14(2):255–264. doi:10.1002/hipo.10172

    Article  PubMed  Google Scholar 

  4. Ding J, Peterson JD, Surmeier DJ (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 28(25):6483–6492. doi:10.1523/JNEUROSCI.0435-08.2008

    Article  PubMed  CAS  Google Scholar 

  5. Dube L, Smith AD, Bolam JP (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J Comp Neurol 267(4):455–471. doi:10.1002/cne.902670402

    Article  PubMed  CAS  Google Scholar 

  6. Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24(10):2813–2824. doi:10.1111/j.1460-9568.2006.05177.x

    Article  PubMed  Google Scholar 

  7. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. J Neural Transm Suppl 36:43–59

    PubMed  CAS  Google Scholar 

  8. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320. doi:10.1146/annurev.ne.15.030192.001441

    Article  PubMed  CAS  Google Scholar 

  9. Green A, Peters TJ, Webster DJ (1991) An assessment of academic performance and personality. Med Educ 25(4):343–348

    Article  PubMed  CAS  Google Scholar 

  10. Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist 7(4):315–324

    Article  PubMed  CAS  Google Scholar 

  11. Hisano S, Hoshi K, Ikeda Y, Maruyama D, Kanemoto M, Ichijo H, Kojima I, Takeda J, Nogami H (2000) Regional expression of a gene encoding a neuron-specific Na(+)-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. Brain Res Mol Brain Res 83(1–2):34–43

    Article  PubMed  CAS  Google Scholar 

  12. Ichinohe N, Iwatsuki H, Shoumura K (2001) Intrastriatal targets of projection fibers from the central lateral nucleus of the rat thalamus. Neurosci Lett 302(2–3):105–108

    Article  PubMed  CAS  Google Scholar 

  13. Johnston JG, Gerfen CR, Haber SN, van der Kooy D (1990) Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res Dev Brain Res 57(1):93–102

    Article  PubMed  CAS  Google Scholar 

  14. Kopec C, Malinow R (2006) Neuroscience. Matters of size. Science 314(5805):1554–1555. doi:10.1126/science.1137595

    Article  PubMed  CAS  Google Scholar 

  15. Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T (2008) Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 28(10):2053–2064. doi:10.1111/j.1460-9568.2008.06502.x

    Article  PubMed  Google Scholar 

  16. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51(3):533–545

    Article  PubMed  CAS  Google Scholar 

  17. Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24(38):8289–8299

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85(2):960–976

    PubMed  CAS  Google Scholar 

  19. Matsuzaki M (2007) Factors critical for the plasticity of dendritic spines and memory storage. Neurosci Res 57(1):1–9. doi:10.1016/j.neures.2006.09.017

    Article  PubMed  Google Scholar 

  20. McGuire PK, Bates JF, Goldman-Rakic PS (1991) Interhemispheric integration: II. Symmetry and convergence of the corticostriatal projections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) of the rhesus monkey. Cereb Cortex 1(5):408–417

    Article  PubMed  CAS  Google Scholar 

  21. Nicholson DA, Yoshida R, Berry RW, Gallagher M, Geinisman Y (2004) Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci 24(35):7648–7653

    Article  PubMed  CAS  Google Scholar 

  22. Ragsdale CW Jr, Graybiel AM (1991) Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 311(1):134–167. doi:10.1002/cne.903110110

    Article  PubMed  Google Scholar 

  23. Raju DV, Shah DJ, Wright TM, Hall RA, Smith Y (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J Comp Neurol 499(2):231–243. doi:10.1002/cne.21099

    Article  PubMed  CAS  Google Scholar 

  24. Reiner A, Anderson KD (1990) The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings. Brain Res Brain Res Rev 15(3):251–265

    Article  PubMed  CAS  Google Scholar 

  25. Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457(4):420–440. doi:10.1002/cne.10541

    Article  PubMed  Google Scholar 

  26. Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27(9):520–527

    Article  PubMed  CAS  Google Scholar 

  27. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34(2):289–300

    Article  PubMed  CAS  Google Scholar 

  28. Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39(2–3):107–140

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the National Science Foundations of China (No. 31070941, No. 20831006, No. 30770679) and the Major State Basic Research Development Program of China (973 Program) (No. 2010CB530004).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlong Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Ouyang, L., Mu, S. et al. The morphological characteristics of corticostriatal and thalamostriatal neurons and their intrastriatal terminals in rats. Surg Radiol Anat 33, 807–817 (2011). https://doi.org/10.1007/s00276-011-0823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-011-0823-9

Keywords

Navigation