Skip to main content
Log in

Intra-articular compressive stress of the elbow joint in extension: an experimental study using Fuji films

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The use of Fuji films is simple but their manipulation and result interpretation seem to be difficult in the framework of medical research. The reliability and reproducibility of Fuji films have been proved by many previous studies. This study was undertaken to know precisely the articular zones of the elbow and to determine the compressive stress these areas undergo during different activities, in order to assess the importance of different articular contact areas. These data indicate the need for better-adapted elbow prosthesis and can be eventually used to design more durable prosthesis for the elbow. The compressive stress on the radial head was less than 25% in extension. The stress on the radial head varied from the neutral position (23% of the stress), to full pronation (11% of the stress) and to full supination (6% of the stress). The Humero-ulnar compartment had the maximum impact. Coronoid process seemed to be a fundamental element of the elbow joint in extension (60% of total compressive stress). The Medial humero-ulnar compartment was less stressed than the lateral compartment. The radial head does not seem to play a major role in the stability of the elbow in extension if the ulnar collateral ligament exists. The ulnar collateral ligament is essential to the elbow joint stability. The lifespan of a non-constrained prosthesis would depend on the existence of the couple: radial head/ulnar collateral ligament; the absence of radial head could compromise the humero-ulnar stability. This work paved the way for the designing of new non-constrained elbow prosthesis with the reconstruction of the radial head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed AM, Burke DL (1983) In vitro measurement of static pressure distribution in synovial joints. J Biomech Eng 105(3):216–225

    Article  PubMed  CAS  Google Scholar 

  2. Alnot JY, Katz V, Hardy P, GUEPAR (2003) GUEPAR radial head prosthesis for recent and old fractures: a series of 22 cases. Rev Chir Orthop 89(4):304–309

    PubMed  Google Scholar 

  3. An KN, Morrey BF (1993) The elbow and its disorders, 2nd edn. WB Saunders, Philadelphia, pp 43–61

    Google Scholar 

  4. An KN, Kaufman KR (1995) Joint articulating surface motion. Biomechanical Engineering Handbook, Bronzino JD

    Google Scholar 

  5. Anderson G (1978) Transmission of moments across the elbow joint. J Biomech 12:747–755

    Article  Google Scholar 

  6. Ateshian GA, Kwak SD, Soslowsky LJ, Mow VC (1994) A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints and a comparison with other methods. J Biomech 27(1):111–124

    Article  PubMed  CAS  Google Scholar 

  7. Bartel DL, Bicknell VL, Wright TM (1986) The effect of conformity, thickness and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg 68A (7):1041–1051

    Google Scholar 

  8. Black JD, Matejczyk MB, Greenwald AS (1981) Reversible cartilage staining technique for determining articular weight-bearing surfaces. Clin Orthop 159:265–267

    PubMed  Google Scholar 

  9. Chantelot C, Fontaine C, Diop A, Migaud H, Lavaste F, Duquennoy A (1998) In vivo study of kinematics of the elbow using electromagnetic goniometer. Ann Chir Main Memb Super 17(1):68–77

    Article  PubMed  CAS  Google Scholar 

  10. Chantelot C, Feugas C, Ala Eddine T, Migaud H, Gueguen G, Fontaine C (2002) Kudo non-stressed elbow prosthesis for inflammatory and hemophilic joint disease: analysis in 30 cases. Rev Chir Orthop 88(4):398–405

    PubMed  CAS  Google Scholar 

  11. Chantelot C, Fontaine C, Migaud H, Duquennoy A (1997) Complete elbow prosthesis for inflammatory and hemophilic arthroplasty: a retrospectve analysis of 22 cases. Ann Chir Main Memb Super 16(1):49–57

    Article  PubMed  CAS  Google Scholar 

  12. Dos Remedios C, Chantelot C, Migaud H, Le Nen D, Fontaine C, Landjerit B (2003) Effect of anterior and posterior capsule release on elbow joint stability: an experimental study. Rev Chir Orthop 89:693–698

    PubMed  CAS  Google Scholar 

  13. Conzen A, Eckstein F (2000) Quantitative determination of articular pressure in the human shoulder joint. J Shoulder Elbow Surg 9(3):196–204

    Article  PubMed  CAS  Google Scholar 

  14. Debouck C, Rooze M (1995) A topographical study of cartilaginous lesions to the elbow. Surg Radiol Anat 17:301–305

    Article  PubMed  CAS  Google Scholar 

  15. Eckstein F, Löhe F, Müller-Gerl M, Steinlechner M, Putz R (1994) Stress distribution in the trochlear notch, a model of bicentric load transmission through joints. J Bone Joint Surg 76B:647–653

    Google Scholar 

  16. Eckstein F, Löhe F, Hillebrand F, Bergmann M, Schulte E, Milz S, Putz R (1995) Morphomechanics of the humero-ulnar joint: joint space width and contact areas as a function of load and flexion angle. Anat Rec 243:318–326

    Article  PubMed  CAS  Google Scholar 

  17. Greenwald AS, O’Connor JJ (1971) The transmission of load through the human hip joint. J Biomech 4(6):507–528

    Article  PubMed  CAS  Google Scholar 

  18. Halls AA, Travill R (1964) Transmission of pressures across the elbow joint. Acta Anat 150:243

    CAS  Google Scholar 

  19. Harris ML, Morberg P, Bruce WJM, Walsh WR (1999) An improved method for measuring tibiofemoral areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32:951–958

    Article  PubMed  CAS  Google Scholar 

  20. Kapandji IA (1970) The physiology of the joints: the elbow, vol 1. Livingstone, London, pp 78–121

    Google Scholar 

  21. Koslowsky TC, Beyer F, Germund I, Mader K, Jergas M, Koebke J (2007) Morphometric parameters of the radial neck: an anatomical study. Surg Radiol Anat 29(4):279–284

    Article  PubMed  CAS  Google Scholar 

  22. Koslowsky TC, Germund I, Beyer F, Mader K, Krieglstein CF, Koebke J (2007) Morphometric parameters of the radial head: an anatomical study. Surg Radiol Anat 29(3):225–230

    Article  PubMed  CAS  Google Scholar 

  23. Kurosawa H, Fukubayashi T, Nakajima H (1981) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop 159:265–267

    Google Scholar 

  24. Liau JJ, Hu CC, Cheng CK, Huang CH, Lo WH (2001) The influence of inserting a Fuji pressure sensitive film between the tibifemoral joint of the knee prosthesis on actual contact characteristic. Clin Biomech 16:160–166

    Article  CAS  Google Scholar 

  25. Liggins AB, Hardie WR, Finlay JB (1994) Sterilization of Fuji pressure-sensitive film. Med Eng Phys 16:496–500

    Article  PubMed  CAS  Google Scholar 

  26. London JT (1981) Kinematics of the elbow. J Bone Joint Surg 63A:529–535

    Google Scholar 

  27. Manouel M, Pearlman HS, Belakhlef A, Bromn TD (1992) A miniature piezoelectric polymer transducer for in vitro measurement of the dynamic contact stress distribution. J Biomech 25(6):627–635

    Article  PubMed  CAS  Google Scholar 

  28. Mertz B, Eckstein F, Hillebrand S, Putz R (1997) Mechanical implications of humeroulnar incongruity-fine element analysis and experiment. J Biomech 30:713–721

    Article  Google Scholar 

  29. Meyer Zu Reckendorf G, Allieu Y (2001) Complications of the total elbow prosthesis: literature review. Cahiers d’enseignement de la SOFCOT. Elsevier, Amsterdam, pp 225–231

  30. Morrey BF, Tanaka S, An KN (1991) Valgus stability of the elbow. Clin Orthop 265:187–195

    PubMed  Google Scholar 

  31. Nicol AC, Berme N, Paul JP (1977) A biomechanical analysis of elbow joint function. In Joint remplacement in the upper limb. London institute of mechanical engineers 45

  32. O’Driscoll SW, Horii E, Morrey BF, Carmichael S (1992) Anatomy of the ulnar part of the lateral collateral ligament of the elbow. Clin Anat 5:296

    Article  Google Scholar 

  33. Pauwels F (1979) Biomechanics of the locomotor apparatus. Springer, Berlin pp 420–441

    Google Scholar 

  34. Regan WD, Korinek SL, Morrey BF (1991) Biomechanical study of ligaments around the elbow joint. Clin Orthop 271:170–179

    PubMed  Google Scholar 

  35. Stormont TJ, An KN, Morrey BF, Chao EY (1985) Elbow joint contact techniques: comparison of techniques. J Biomech 18:329–336

    Article  PubMed  CAS  Google Scholar 

  36. Tillmann B (1978) A contribution to the functional morphology of articular surfaces. Norm Pathol Anat (Stuttg) 34:1–50

    CAS  Google Scholar 

  37. Yao JQ, Seedhom BB (1991) A new technique for measuring contact areas in human joints the “3S technique”. Proc Inst Mech Eng 205(2):69–72

    CAS  Google Scholar 

  38. Zdero R, Fenton PV, Rudan J, Bryant JT, Eng P (2001) Fuji film and ultrasound measurement of total knee arthroplasty contact areas. J Arthroplasty 16(6):367–375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chantelot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chantelot, C., Wavreille, G., Dos Remedios, C. et al. Intra-articular compressive stress of the elbow joint in extension: an experimental study using Fuji films. Surg Radiol Anat 30, 103–111 (2008). https://doi.org/10.1007/s00276-007-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-007-0297-y

Keywords

Navigation