Skip to main content
Log in

Computed tomographic study of the posterior condylar angle in arthritic knees: its use in the rotational positioning of the femoral implant of total knee prostheses

  • Radiologic Anatomy
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The epicondylar axis is a reliable reference to check the rotation of the femoral implant in total knee prostheses (TKPs). However, during the operation it seems easier to use the posterior condylar axis as a landmark. The angle between these two axes is called the posterior condylar angle (PCA). The aim of this study was to measure the PCA in arthritic knees to assess the reliability of the posterior condylar axis as a reference for the control of the rotation of the femoral implant and to look for correlation with other radiological measurements. This prospective study consisted of 103 arthritic knees (81 varus, 22 valgus) before a TKP had been done in 103 patients (75 women, 28 men). The assessment of the PCA was made by computed tomographic scanning (CT). The HKA, HKS and HKT angles were measured on the pangonogram. The posterior condylar axis was internally rotated with respect to the epicondylar axis. The average value for all the patients was 2.65° degrees with a range from 0° to 7°. The PCA was significantly increased in the valgus knees. There was no correlation between the angles on the pangonogram and the posterior condylar axis. While the preoperative assessment of the PCA by CT scanning is reliable, the results obtained indicate the marked variability in its value. If one wishes to use the posterior condylar axis as a guide for rotation, it is therefore necessary to assess the PCA for each patient using adjustable jigs according to the value obtained. No measurement on standard radiographs allowed an extrapolation of the value of the PCA, and CT scanning seems to be the preferable radiological examination.

Résumé

L'axe épicondylien est une référence fiable pour le contrôle de la rotation de l'implant fémoral dans les prothèses totales de genou (PTG). Mais, lors de l'intervention, il semble plus facile d'utiliser l'axe condylien postérieur comme repère. L'angle entre ses deux axes est appelé angle condylien postérieur (ACP). Le but de cette étude était de mesurer l'ACP dans les genoux arthrosiques, d'évaluer la fiabilité de l'axe condylien postérieur comme référence pour le réglage de la rotation de l'implant fémoral, de rechercher une corrélation avec d'autres mesures radiologiques. Une étude prospective comportant 103 genoux arthrosiques (81 varus et 22 valgus), avant PTG a été effectuée, chez 103 patients (75 femmes et 28 hommes). L'évaluation de l'ACP a été faite par examen tomodensitométrique (TDM). Les angles HKA, HKS et HKT ont été mesurés sur le pangonogramme. L'axe condylien postérieur était en rotation interne par rapport à l'axe épicondylien. La valeur moyenne pour tous les patients était de 2.65°, avec des valeurs de 0 à 7°. La valeur de l'angle CP augmentait avec une différence significative dans le groupe des genu valgum. Il n'y avait pas de corrélation entre les angles du pangonogramme et l'ACP. Si l'évaluation pré-opératoire de l'ACP par TDM est fiable, les résultats obtenus mettent en évidence une variabilité importante de sa valeur. Il faut donc, si l'on veut utiliser l'axe condylien postérieur comme repère de rotation, évaluer pour chaque patient l'ACP, et utiliser un ancillaire réglable reportant la valeur obtenue. Aucune mesure sur des radiographies standard ne permettant d'extrapoler la valeur de l'ACP, la TDM semble l'examen radiologique de choix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Akagi M, Matsusue Y, Mata T, et al (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop 366: 155–163

    PubMed  Google Scholar 

  2. Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop 287: 170–177

    PubMed  Google Scholar 

  3. Arima J, Whiteside LA, McCarthy DS, White SE (1995) Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Joint Surg Am 77: 1331–1334

    CAS  PubMed  Google Scholar 

  4. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop 356: 144–153

    PubMed  Google Scholar 

  5. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop 286: 40–47

    PubMed  Google Scholar 

  6. Boisrenoult P, Scemama P, Fallet L, Beaufils P (2001) La torsion épiphysaire distale du fémur dans le genou arthrosique: étude tomodensitométrique de 75 genoux avec arthrose médiale. Rev Chir Orthop 87: 469–476

    CAS  PubMed  Google Scholar 

  7. Bonnin M, Deschamps G, Neyret P, Chambat P (2000) Les changements de prothèses totales du genou non infectées: analyse des résultats à propos d'une série continue de 69 cas. Rev Chir Orthop 86: 694–706

    CAS  PubMed  Google Scholar 

  8. Briard JL, Hungerford DS (1989) Patellofemoral instability in total knee arthroplasty. J Arthroplasty 4: 87–97

    PubMed  Google Scholar 

  9. Churchill DL, Incavo SJ, Johnson CC, Beynon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop 356: 111–118

    PubMed  Google Scholar 

  10. Eckhoff DG, Montgomery WK, Stamm ER, Kilcoyne RF (1996) Location of the femoral sulcus in the osteoarthritic knee [see comments]. J Arthroplasty 11: 163–165

    PubMed  Google Scholar 

  11. Eckhoff DG, Piatt BE, Gnadinger CA, Blaschke RC (1995) Assessing rotational alignment in total knee arthroplasty. Clin Orthop 318: 176–181

    PubMed  Google Scholar 

  12. Figgie HED, Goldberg VM, Figgie MP, Inglis AE, Kelly M, Sobel M (1989) The effect of alignment of the implant on fractures of the patella after condylar total knee arthroplasty. J Bone Joint Surg Am 71: 1031–1039

    PubMed  Google Scholar 

  13. Griffin FM, Insall JN, Scuderi GR (1998) The posterior condylar angle in osteoarthritic knees. J Arthroplasty 13: 812–815

    CAS  PubMed  Google Scholar 

  14. Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL (2000) Anatomy of the epicondyle of the distal femur: MRI analysis of normal knees. J Arthroplasty 15: 354–359

    CAS  PubMed  Google Scholar 

  15. Harwin SF, Stein AJ, Stern RE (1994) Patellofemoral resurfacing at total knee arthroplasty. Contemp Orthop 29: 265–271

    CAS  PubMed  Google Scholar 

  16. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop 290: 259–268

    PubMed  Google Scholar 

  17. Insall JN, Kelly M (1986) The total condylar prosthesis. Clin Orthop 205: 43–48

    PubMed  Google Scholar 

  18. Jazrawi LM, Birdzell L, Kummer FJ, Di Cesare PE (2000) The accuracy of computed tomography for determining femoral and tibial total knee arthroplasty component rotation. J Arthroplasty 15: 761–766

    Article  CAS  PubMed  Google Scholar 

  19. Laskin RS (1995) Flexion space configuration in total knee arthroplasty. J Arthroplasty 10: 657–660

    CAS  PubMed  Google Scholar 

  20. Mantas JP, Bloebaum RD, Skedros JG, Hofmann AA (1992) Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 7: 531–535

    PubMed  Google Scholar 

  21. Nagamine R, Miura H, Bravo CV, et al (2000) Anatomic variations should be considered in total knee arthroplasty. J Orthop Sci 5: 232–237

    Article  CAS  PubMed  Google Scholar 

  22. Nagamine R, Miura H, Inoue Y, et al (1998) Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Orthop Sci 3: 194–198

    Article  CAS  PubMed  Google Scholar 

  23. Olcott CW, Scott RD (1999) The Ranawat award. Femoral component rotation during total knee arthroplasty. Clin Orthop 367: 39–42

    PubMed  Google Scholar 

  24. Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop 331: 35–46

    PubMed  Google Scholar 

  25. Rhoads DD, Noble PC, Reuben JD, Tullos HS (1993) The effect of femoral component position on the kinematics of total knee arthroplasty. Clin Orthop 286: 122–129

    PubMed  Google Scholar 

  26. Stiehl JB, Cherveny PM (1996) Femoral rotational alignment using the tibial shaft axis in total knee arthroplasty. Clin Orthop 331: 47–55

    PubMed  Google Scholar 

  27. Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop 321: 168–172

    PubMed  Google Scholar 

  28. Yamada K, Imaizumi T (2000) Assessment of relative rotational alignment in total knee arthroplasty: usefulness of the modified Eckhoff method. J Orthop Sci 5: 100–103

    Article  CAS  PubMed  Google Scholar 

  29. Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Joint Surg Am 69: 873–880

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Boisgard.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisgard, S., Moreau, PE., Descamps, S. et al. Computed tomographic study of the posterior condylar angle in arthritic knees: its use in the rotational positioning of the femoral implant of total knee prostheses. Surg Radiol Anat 25, 330–334 (2003). https://doi.org/10.1007/s00276-003-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-003-0144-8

Keywords

Navigation