Skip to main content
Log in

Preventive Vertebroplasty for Long-Term Consolidation of Vertebral Metastases

  • Clinical Investigation
  • Non-Vascular Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2020

This article has been updated

Abstract

Introduction

To evaluate the long-term consolidation of vertebral metastases (VM) after preventive vertebroplasty (PV) and to report risk factors of pathological fracture despite PV.

Materials and Methods

Files of 100 consecutives cancer patients referred for PV of VM were retrospectively analyzed. We enumerated 215 VM at the time of the PV procedure (T0): 138 VM were considered at risk of pathological fracture and had PV (treated-VM), and 77 VM were not cemented. We compared the VM characteristics using the spine instability neoplastic score (SINS) at T0 and the rate of pathologic fracture between treated-VM and untreated-VM using Kaplan–Meier method. We analyzed risk factors of pathological fracture despite PV using treated-VM characteristics and quality of cement injection criteria.

Results

Despite a lower SINS value at T0 (p < 0.001), the rate of pathological fracture was significantly higher among untreated-VM compared to the treated-VM, (log-rank, p < 0.001). Major risk factors of fracture among treated-VM were: SINS value ≥ 8 (p < 0.012), mechanical pain (p = 0.001), osteolytic lesion (p = 0.033), metastatic vertebral body involvement > 50% with no collapse (p < 0.001) and unilateral posterior involvement by the vertebral metastasis (p = 0.024), Saliou score < 9 (p = 0.008), vertebral metastasis filling with cement < 50% (p = 0.007) and the absence of cement’s contact with vertebral endplates (p = 0.014).

Conclusion

PV is long-term effective for consolidation of VM and must be discussed at the early diagnosed. Quality of cement injection matters, suggesting that techniques that improve the quantity and the quality of cement diffusion into the VM must be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 04 March 2020

    In the original article, the following author name was incorrectly published and the corrected name is given below.

References

  1. Uei H, Tokuhashi Y. Prognostic factors in patients with metastatic spine tumors derived from lung cancer—a novel scoring system for predicting life expectancy. World J Surg Oncol. 2018. https://doi.org/10.1186/s12957-018-1439-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chew C, Ritchie M, O’Dwyer PJ, Edwards R. A prospective study of percutaneous vertebroplasty in patients with myeloma and spinal metastases. Clin Radiol. 2011;66:1193–6. https://doi.org/10.1016/j.crad.2011.08.004.

    Article  CAS  PubMed  Google Scholar 

  3. Leung O, Poon W, Nyaw S, Luk S. Percutaneous cementoplasty of osteolytic metastases induces immediate and long-lasting pain relief in oncological patients. Hong Kong Med J. 2013. https://doi.org/10.12809/hkmj133743.

    Article  PubMed  Google Scholar 

  4. Saliou G, Kocheida EM, Lehmann P, Depriester C, Paradot G, Le Gars D, Balut A, Deramond H. Percutaneous vertebroplasty for pain management in malignant fractures of the spine with epidural involvement. Radiology. 2010. https://doi.org/10.1148/radiol.09081698.

    Article  PubMed  Google Scholar 

  5. Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V, Thoreson A, An K-N. Biomechanical effects of metastasis in the osteoporotic lumbar spine: a finite element analysis. BMC Musculoskelet Disord. 2018. https://doi.org/10.1186/s12891-018-1953-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine. 2001;26:1547–54.

    Article  CAS  PubMed  Google Scholar 

  7. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, Harrop JS, Fehlings MG, Boriani S, Chou D. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine. 2010;35:E1221–9.

    Article  PubMed  Google Scholar 

  8. Franc J, Lehmann P, Saliou G, Monet P, Kocheida E-M, Daguet E, Laurent A, Legars D, Deramond H. Vertébroplastie: évaluation clinique et radiologique à plus de dix ans. J Neuroradiol. 2010;37:211–9. https://doi.org/10.1016/j.neurad.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  9. Gandaglia G, Karakiewicz PI, Briganti A, Passoni NM, Schiffmann J, Trudeau V, Graefen M, Montorsi F, Sun M. Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol. 2015;68:325–34. https://doi.org/10.1016/j.eururo.2014.07.020.

    Article  PubMed  Google Scholar 

  10. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K. Metastatic sites and survival in lung cancer. Lung Cancer. 2014;86:78–84. https://doi.org/10.1016/j.lungcan.2014.07.020.

    Article  PubMed  Google Scholar 

  11. Fisher CG, Schouten R, Versteeg AL, Boriani S, Varga PP, Rhines LD, Kawahara N, Fourney D, Weir L, Reynolds JJ. Reliability of the spinal instability neoplastic score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014;9:69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van der Velden JM, Versteeg AL, Verkooijen HM, Fisher CG, Chow E, Oner FC, van Vulpen M, Weir L, Verlaan J. Prospective evaluation of the relationship between mechanical stability and response to palliative radiotherapy for symptomatic spinal metastases. Oncologist. 2017;22:972–8. https://doi.org/10.1634/theoncologist.2016-0356.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rief H, Bischof M, Bruckner T, Welzel T, Askoxylakis V, Rieken S, Lindel K, Combs S, Debus J. The stability of osseous metastases of the spine in lung cancer–a retrospective analysis of 338 cases. Radiat Oncol. 2013;8:200.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vogl TJ, Pflugmacher R, Hierholzer J, Stender G, Gounis M, Wakhloo A, Fiebig C, Hammerstingl R. Cement directed kyphoplasty reduces cement leakage as compared with vertebroplasty: results of a controlled, randomized trial. Spine. 2013;38:1730–6.

    Article  PubMed  Google Scholar 

  15. Zhang H-T, Chen G-D, Yang H-L, Luo Z-P. Percutaneous kyphoplasty in the treatment of osteoblastic-related spinal metastases. Clin Spine Surg. 2017;30:80–4. https://doi.org/10.1097/BSD.0b013e3182a35745.

    Article  PubMed  Google Scholar 

  16. Mohme M, Riethdorf S, Dreimann M, Werner S, Maire CL, Joosse SA, Bludau F, Mueller V, Neves RPL, Stoecklein NH, Lamszus K, Westphal M, Pantel K, Wikman H, Eicker SO. Circulating tumour cell release after cement augmentation of vertebral metastases. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-07649-z.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Renaud C. Treatment of vertebral compression fractures with the cranio-caudal expandable implant SpineJack®: technical note and outcomes in 77 consecutive patients. Orthop Traumatol Surg Res. 2015;101:857–9. https://doi.org/10.1016/j.otsr.2015.08.009.

    Article  CAS  PubMed  Google Scholar 

  18. Korovessis P, Vardakastanis K, Vitsas V, Syrimpeis V. Is kiva implant advantageous to balloon kyphoplasty in treating osteolytic metastasis to the spine? Comparison of 2 percutaneous minimal invasive spine techniques: a prospective randomized controlled short-term study. Spine. 2014;39:E231–9. https://doi.org/10.1097/BRS.0000000000000112.

    Article  PubMed  Google Scholar 

  19. Koller H, Acosta F, Hempfing A, Rohrmüller D, Tauber M, Lederer S, Resch H, Zenner J, Klampfer H, Schwaiger R, Bogner R, Hitzl W. Long-term investigation of nonsurgical treatment for thoracolumbar and lumbar burst fractures: an outcome analysis in sight of spinopelvic balance. Eur Spine J. 2008;17:1073–95. https://doi.org/10.1007/s00586-008-0700-3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Spross C, Aghayev E, Kocher R, Röder C, Forster T, Kuelling FA. Incidence and risk factors for early adjacent vertebral fractures after balloon kyphoplasty for osteoporotic fractures: analysis of the SWISSspine registry. Eur Spine J. 2014;23:1332–8. https://doi.org/10.1007/s00586-013-3052-6.

    Article  PubMed  Google Scholar 

  21. Katscher S, Verheyden P, Gonschorek O, Glasmacher S, Josten C. Thorakolumbale Wirbelfrakturen nach konservativer und operativer Behandlung. Unfallchirurg. 2003;106:20–7. https://doi.org/10.1007/s00113-002-0459-7.

    Article  CAS  PubMed  Google Scholar 

  22. Buchowski JM, Kuhns CA, Bridwell KH, Lenke LG. Surgical management of posttraumatic thoracolumbar kyphosis. Spine J. 2008;8:666–77. https://doi.org/10.1016/j.spinee.2007.03.006.

    Article  PubMed  Google Scholar 

  23. Nardi A, Tarantino U, Ventura L, Armotti P, Resmini G, Cozzi L, Tonini G, Ramazzina E, Rossini M. Domino effect: mechanic factors role. Clin Cases Miner Bone Metab. 2011;8:38.

    PubMed  PubMed Central  Google Scholar 

  24. Imagama S, Hasegawa Y, Matsuyama Y, Sakai Y, Ito Z, Hamajima N, Ishiguro N. Influence of sagittal balance and physical ability associated with exercise on quality of life in middle-aged and elderly people. Arch Osteoporos. 2011;6:13–20. https://doi.org/10.1007/s11657-011-0052-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin W-C, Cheng T-T, Lee Y-C, Wang T-N, Cheng Y-F, Lui C-C, Yu C-Y. New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: retrospective analysis of risk factors. J Vasc Interv Radiol. 2008;19:225–31. https://doi.org/10.1016/j.jvir.2007.09.008.

    Article  PubMed  Google Scholar 

  26. Berton A, Salvatore G, Giambini H, Ciuffreda M, Longo UG, Denaro V, Thoreson A, An K-N. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: vertebral stability and stress distribution on adjacent vertebrae. J Spinal Cord Med. 2018;2:1–7. https://doi.org/10.1080/10790268.2018.1432309.

    Article  Google Scholar 

  27. Yu W, Liang D, Yao Z, Qiu T, Ye L, Huang X, Jiang X. Risk factors for recollapse of the augmented vertebrae after percutaneous vertebroplasty for osteoporotic vertebral fractures with intravertebral vacuum cleft. Med (Baltim). 2017;96:e5675. https://doi.org/10.1097/MD.0000000000005675.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Delpla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delpla, A., Tselikas, L., De Baere, T. et al. Preventive Vertebroplasty for Long-Term Consolidation of Vertebral Metastases. Cardiovasc Intervent Radiol 42, 1726–1737 (2019). https://doi.org/10.1007/s00270-019-02314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02314-6

Keywords

Navigation