Skip to main content
Log in

Physical Properties of Venous Stents: An Experimental Comparison

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Iliocaval obstruction is a substantial contributor to chronic venous insufficiency and is increasingly being treated endovascularly with angioplasty and stent placement. Utilization of an appropriate stent for treatment is pivotal; however, until today, mechanical properties of venous stents remain unknown.

Materials and Methods

We analyzed the radial resistive force, the chronic outward force, as well as the crush resistance of seven stent models [Zilver Vena (Cook, Bjaeverskov, Denmark), Sinus Venous, Sinus Obliquus and Sinus XL Flex (Optimed, Ettlingen, Germany), Vici (Veniti; St. Louis, USA), Wallstent (Boston Scientific, Marlborough, USA), and Venovo (Bard, Tempe, USA)] in vitro using a radial force testing machine (RX-650, Machine Solutions Inc., Flagstaff, AZ, USA) and a hardness testing machine (zwickiLine, Zwick Roell, Ulm, Germany).

Results

The Sinus Obliquus revealed the highest radial resistive force (19.41 N/cm) and the highest chronic outward force at 50 and 30% nominal diameter (7.93 N/cm at 50%, 16.97 N/cm at 30%) while the Venovo revealed the highest chronic outward force at 90 and 80% nominal diameter (4.83 N/cm at 90%, 5.37 N/cm at 80%). The radial resistive force and the chronic outward force of the Wallstent greatly depended on whether the stent ends were fixated. The Wallstent revealed the highest crush resistance at nominal diameters of 90% (0.46 N/cm) to 60% (1.16 N/cm). The Sinus Obliquus revealed the highest crush resistance at a nominal diameter of 50% (1.41 N/cm).

Conclusion

Venous stents greatly differ regarding their mechanical properties. These results should be considered when choosing an appropriate stent for the treatment of venous obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oderich GS, Treiman GS, Schneider P, Bhirangi K. Stent placement for treatment of central and peripheral venous obstruction: a long-term multi-institutional experience. J Vasc Surg. 2000;32(4):760–9.

    Article  CAS  PubMed  Google Scholar 

  2. Funaki B, Szymski GX, Leef JA, et al. Treatment of venous outflow stenoses in thigh grafts with Wallstents. AJR Am J Roentgenol. 1999;172(6):1591–6.

    Article  CAS  PubMed  Google Scholar 

  3. Sista AK, Vedantham S, Kaufman JA, Madoff DC. Endovascular interventions for acute and chronic lower extremity deep venous disease: state of the art. Radiology. 2015;276(1):31–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raju S, Tackett P Jr, Neglen P. Reinterventions for nonocclusive iliofemoral venous stent malfunctions. J Vasc Surg. 2009;49(2):511–8.

    Article  PubMed  Google Scholar 

  5. Raju S, Owen S Jr, Neglen P. The clinical impact of iliac venous stents in the management of chronic venous insufficiency. J Vasc Surg. 2002;35(1):8–15.

    Article  PubMed  Google Scholar 

  6. Neglen P. Chronic venous obstruction: diagnostic considerations and therapeutic role of percutaneous iliac stenting. Vascular. 2007;15(5):273–80.

    Article  PubMed  Google Scholar 

  7. Neglen P, Hollis KC, Olivier J, Raju S. Stenting of the venous outflow in chronic venous disease: long-term stent-related outcome, clinical, and hemodynamic result. J Vasc Surg. 2007;46(5):979–90.

    Article  PubMed  Google Scholar 

  8. Neglen P, Thrasher TL, Raju S. Venous outflow obstruction: an underestimated contributor to chronic venous disease. J Vasc Surg. 2003;38(5):879–85.

    Article  PubMed  Google Scholar 

  9. Raju S, Neglen P. Laser, “closure”, stents and other new technology in the treatment of venous disease. J Miss State Med Assoc. 2004;45(10):290–7.

    PubMed  Google Scholar 

  10. Raju S, Neglen P. High prevalence of nonthrombotic iliac vein lesions in chronic venous disease: a permissive role in pathogenicity. J Vasc Surg. 2006;44(1):136–43 (discussion 44).

    Article  PubMed  Google Scholar 

  11. Maleux G, Vertenten B, Laenen A, et al. Palliative endovascular treatment of cancer-related iliocaval obstructive disease: technical and clinical outcomes. Acta Radiol. 2016;57(4):451–6.

    Article  PubMed  Google Scholar 

  12. Devcic Z, Techasith T, Banerjee A, Rosenberg JK, Sze DY. Technical and Anatomic Factors Influencing the Success of Inferior Vena Caval Stent Placement for Malignant Obstruction. J Vasc Interv Radiol. 2016;27(9):1350–60.

    Article  PubMed  Google Scholar 

  13. Kim DB, Choi H, Joo SM, et al. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility. Artif Organs. 2013;37(4):368–79.

    Article  PubMed  Google Scholar 

  14. Neglen P, Raju S. Balloon dilation and stenting of chronic iliac vein obstruction: technical aspects and early clinical outcome. J Endovasc Ther. 2000;7(2):79–91.

    Article  CAS  PubMed  Google Scholar 

  15. Lamont JP, Pearl GJ, Patetsios P, et al. Prospective evaluation of endoluminal venous stents in the treatment of the May-Thurner syndrome. Ann Vasc Surg. 2002;16(1):61–4.

    Article  PubMed  Google Scholar 

  16. Palmaz JC. Intravascular stents: tissue-stent interactions and design considerations. AJR Am J Roentgenol. 1993;160(3):613–8.

    Article  CAS  PubMed  Google Scholar 

  17. O’Sullivan GJ, Waldron D, Mannion E, Keane M, Donnellan PP. Thrombolysis and iliofemoral vein stent placement in cancer patients with lower extremity swelling attributed to lymphedema. J Vasc Interv Radiol. 2015;26(1):39–45.

    Article  PubMed  Google Scholar 

  18. de Wolf MA, de Graaf R, Kurstjens RL, Penninx S, Jalaie H, Wittens CH. short-term clinical experience with a dedicated venous nitinol stent: initial results with the sinus-venous stent. Eur J Vasc Endovasc Surg. 2015;50(4):518–26.

    Article  PubMed  Google Scholar 

  19. O’Sullivan GJ, Sheehan J, Lohan D, McCann-Brown JA. Iliofemoral venous stenting extending into the femoral region: initial clinical experience with the purpose-designed Zilver Vena stent. J Cardiovasc Surg. 2013;54(2):255–61.

    Google Scholar 

Download references

Acknowledgements

We thank AB Medica, Bard, Boston Scientific, Cook, and Optimed for donating the stents used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. R. Kuetting.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabir, D., Feisst, A., Thomas, D. et al. Physical Properties of Venous Stents: An Experimental Comparison. Cardiovasc Intervent Radiol 41, 942–950 (2018). https://doi.org/10.1007/s00270-018-1916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-1916-1

Keywords

Navigation