Skip to main content
Log in

Ultrasound-Guided Biopsies of Bone Lesions Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept

  • Technical Note
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the technical feasibility and safety of combined fusion imaging and needle tracking under ultrasound guidance to target bone lesions without cortical disruption.

Materials and Methods

Between January 2016 and March 2016, seven patients underwent US-guided biopsy of bone lesions without cortical disruption. Targeted bone lesions were measuring more than 1.5 cm with a thin cortex, a trans-osseous pathway not exceeding 2 cm and without any adjacent vulnerable structures. First three procedures were performed in the CT suite to aid the needle tracking where necessary (group 1), the remaining four procedures were performed in the US suite (group 2). In group 1, deviation from the real position of the bone trocar (estimated on CT) was compared to the virtual position (estimated on the fusion CT–US images). In both group, procedure data and histopathological results were collected, and compared to the suspected diagnosis and follow-up.

Results

Mean procedure duration was 44 min. Total number of synchronisation points for combined fusion imaging were 3.3 on average. In group 1, mean deviation between the virtual and real CT coordinates was 5.3 mm on average. All biopsies yielded adequate quality analysable bone sample. Histopathological analysis revealed malignancy in three cases, non-specific inflammation in two cases, and normal bone in two cases. The four benign results were confirmed as true negative results. There were no immediate or post-procedural complications.

Conclusion

The use of combined fusion imaging and needle tracking ultrasound guidance to target bone lesions without cortical disruption seems technically feasible, provided the patient and lesion selection is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Vieillard MH, Boutry N, Chastanet P, Duquesnoy B, Cotten A, Cortet B. Contribution of percutaneous biopsy to the definite diagnosis in patients with suspected bone tumor. Joint Bone Spine. 2005;72(1):53–60.

    Article  PubMed  Google Scholar 

  2. Monfardini L, Preda L, Aurilio G, Rizzo S, Bagnardi V, Renne G, Maccagnoni S, Vigna PD, Davide D, Bellomi M. CT-guided bone biopsy in cancer patients with suspected bone metastases: retrospective review of 308 procedures. Radiol Med. 2014;119(11):852–60. doi:10.1007/s11547-014-0401-4.

    Article  PubMed  Google Scholar 

  3. Tselikas L, Joskin J, Roquet F, Farouil G, Dreuil S, Hakimé A, Teriitehau C, Auperin A, de Baere T, Deschamps F. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol. 2015;38(1):167–76. doi:10.1007/s00270-014-0870-9.

    Article  PubMed  Google Scholar 

  4. Le HB, Lee ST, Munk PL. Image-guided musculoskeletal biopsies. Semin Intervent Radiol. 2010;27(2):191–8. doi:10.1055/s-0030-1253517.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saifuddin A, Mitchell R, Burnett SJ, Sandison A, Pringle JA. Ultrasound-guided needle biopsy of primary bone tumours. J Bone Joint Surg Br. 2000;82(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  6. Kongnyuy M, George AK, Rastinehad AR, Pinto PA. Magnetic resonance imaging-ultrasound fusion-guided prostate biopsy: review of technology, techniques, and outcomes. Curr Urol Rep. 2016;17(4):32. doi:10.1007/s11934-016-0589-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song KD, Lee MW, Rhim H, Cha DI, Chong Y, Lim HK. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. AJR Am J Roentgenol. 2013;201(5):1141–7. doi:10.2214/AJR.13.10532.

    Article  PubMed  Google Scholar 

  8. Makino Y, Imai Y, Ohama H, Igura T, Kogita S, Sawai Y, Fukuda K, Takamura M, Ohashi H, Murakami T. Ultrasonography fusion imaging system increases the chance of radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on conventional ultrasonography. Oncology. 2013;84(Suppl 1):44–50. doi:10.1159/000345889.

    Article  PubMed  Google Scholar 

  9. Hakime A, Deschamps F, De Carvalho EG, Barah A, Auperin A, De Baere T. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Intervent Radiol. 2012;35(4):898–905. doi:10.1007/s00270-011-0278-8.

    Article  PubMed  Google Scholar 

  10. Patel IJ, Davidson JC, Nikolic B, Salazar GM, Schwartzberg MS, Walker TG, et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol. 2012;23(6):727–36.

    Article  PubMed  Google Scholar 

  11. Khalil JG, Mott MP, Parsons TW 3rd, Banka TR, van Holsbeeck M. 2011 mid-America orthopaedic association Dallas B. Phemister physician in training award: Can musculoskeletal tumors be diagnosed with ultrasound fusion-guided biopsy? Clin Orthop Relat Res. 2012;470(8):2280–7. doi:10.1007/s11999-012-2405-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C. Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT–US fusion imaging system. Invest Radiol. 2008;43(1):33–9.

    Article  PubMed  Google Scholar 

  13. Zhao Y, Shen Y, Bernard A, Cachard C, Liebgott H. Evaluation and comparison of current biopsy needle localization and tracking methods using 3D ultrasound. Ultrasonics. 2017;73:206–20. doi:10.1016/j.ultras.2016.09.006.

    Article  CAS  PubMed  Google Scholar 

  14. Appelbaum L, Solbiati L, Sosna J, Nissenbaum Y, Greenbaum N, Goldberg SN. Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol. 2013;20(2):209–17. doi:10.1016/j.acra.2012.09.020.

    Article  PubMed  Google Scholar 

  15. März K, Franz AM, Seitel A, Winterstein A, Hafezi M, Saffari A, Bendl R, Stieltjes B, Meinzer HP, Mehrabi A, Maier-Hein L. Interventional real-time ultrasound imaging with an integrated electromagnetic field generator. Comput Assist Radiol Surg. 2014;9(5):759–68. doi:10.1007/s11548-014-0990-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Garnon.

Ethics declarations

Conflict of interest

Julien Garnon received fees from Toshiba for oral presentations. All other authors have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnon, J., Koch, G., Tsoumakidou, G. et al. Ultrasound-Guided Biopsies of Bone Lesions Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept. Cardiovasc Intervent Radiol 40, 1267–1273 (2017). https://doi.org/10.1007/s00270-017-1638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-017-1638-9

Keywords

Navigation