Skip to main content
Log in

Eligibility for Renal Denervation: Anatomical Classification and Results in Essential Resistant Hypertension

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To classify the renal artery (RA) anatomy based on specific requirements for endovascular renal artery denervation (RDN) in patients with drug-resistant hypertension (RH).

Materials and Methods

The RA anatomy of 122 consecutive RH patients was evaluated by computed tomography angiography and classified as two types: A (main RA ≥20 mm in length and ≥4.0 mm in diameter) or B (main RA <20 mm in length or main RA <4.0 mm in diameter). The A type included three subtypes: A1 (without accessory RAs), A2 (with accessory RAs <3.0 mm in diameter), and A3 (with accessory RAs ≥3.0 mm in diameter]. A1 and A2 types were eligible for RDN with the Simplicity Flex catheter. Type B included twi subtypes based on the main RA length and diameter. Patients were accordingly classified into three eligibility categories: complete (CE; both RAs were eligible), partial (PE; one eligible RA), and noneligibility (NE; no eligible RA).

Results

Bilateral A1 type was the most prevalent and was observed in 48.4 % of the patients followed by the A1/A2 type (18 %). CE, PE, and NE were observed in 69.7, 22.9, and 7.4 % of patients, respectively. The prevalence of accessory RAs was 41 %.

Conclusions

Of RH patients, 30.3 % were not eligible for bilateral RDN with the current Simplicity Flex catheter. This classification provides the basis for standardized reporting to allow for pooling of results of larger patient cohorts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281

    Article  PubMed  Google Scholar 

  2. Sapoval M, Azizi M, Bobrie G, Cholley B, Pagny JY, Plouin PF (2012) Endovascular renal artery denervation: why, when, and how? Cardiovasc Intervent Radiol 35(3):463–471

    Article  PubMed  Google Scholar 

  3. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909

    Article  PubMed  Google Scholar 

  4. Davis MI, Filion KB, Zhang D et al (2013) Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol 62(3):231–241

    Article  PubMed  Google Scholar 

  5. Mahfoud F, Ukena C, Schmieder RE et al (2013) Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation 128(2):132–140

    Article  CAS  PubMed  Google Scholar 

  6. Azizi M, Steichen O, Frank M, Bobrie G, Plouin PF, Sapoval M (2012) Catheter-based radiofrequency renal-nerve ablation in patients with resistant hypertension. Eur J Vasc Endovasc Surg 43(3):293–299

    Article  CAS  PubMed  Google Scholar 

  7. Beregi JP, Mauroy B, Willoteaux S, Mounier-Vehier C, Remy-Jardin M, Francke J (1999) Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur Radiol 9(7):1330–1334

    Article  CAS  PubMed  Google Scholar 

  8. Neri E, Caramella D, Bisogni C et al (1999) Detection of accessory renal arteries with virtual vascular endoscopy of the aorta. Cardiovasc Intervent Radiol 22(1):1–6

    Article  CAS  PubMed  Google Scholar 

  9. Urban BA, Ratner LE, Fishman EK (2001) Three-dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications. Radiographics 21(2):373–386 questionnaire 549–555

    Article  CAS  PubMed  Google Scholar 

  10. Ozkan U, Oguzkurt L, Tercan F, Kizilkilic O, Koc Z, Koca N (2006) Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diagn Interv Radiol 12(4):183–186

    PubMed  Google Scholar 

  11. Saba L, Sanfilippo R, Montisci R, Conti M, Mallarini G (2008) Accessory renal artery stenosis and hypertension: are these correlated? Evaluation using multidetector-row computed tomographic angiography. Acta Radiol 49(3):278–284

    Article  CAS  PubMed  Google Scholar 

  12. Manea CN, Stanca VD, Precup D, Coman I (2011) Vascular anatomical variants in renal surgery: classic and robotic approach. Rom J Morphol Embryol 52(3):855–858

    CAS  PubMed  Google Scholar 

  13. Palmieri BJ, Petroianu A, Silva LC, Andrade LM, Alberti LR (2011) Study of arterial pattern of 200 renal pedicle through angiotomography. Rev Col Bras Cir 38(2):116–121

    Article  PubMed  Google Scholar 

  14. Ramadan SU, Yigit H, Gokharman D et al (2011) Can renal dimensions and the main renal artery diameter indicate the presence of an accessory renal artery? A 64-slice CT study. Diagn Interv Radiol 17(3):266–271

    PubMed  Google Scholar 

  15. Gumus H, Bukte Y, Ozdemir E et al (2012) Variations of renal artery in 820 patients using 64-detector CT-angiography. Renal Fail 34(3):286–290

    Article  Google Scholar 

  16. Hutchinson BD, Keane D, Dodd JD (2013) Renal sympathetic denervation: mDCT evaluation of the renal arteries. AJR Am J Roentgenol 201(2):W342–W346

    Article  PubMed  Google Scholar 

  17. Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536

    PubMed  Google Scholar 

  18. Kandzari DE, Bhatt DL, Sobotka PA et al (2012) Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol 35(9):528–53519

    Article  PubMed  Google Scholar 

  19. Worthley SG, Tsioufis CP, Worthley MI et al (2013) Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 34(28):2132–2140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M (2012) First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention 8(1):57–61

    Article  PubMed  Google Scholar 

  21. Ormiston JA, Watson T, van Pelt N et al (2013) Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial. EuroIntervention 9(1):70–74

    Article  PubMed  Google Scholar 

  22. Hoppe UC (2012) Clinical experience with Vessix Vascular balloon renal denervation catheter. The 2012 Annual Scientific Sessions of the European Association for Percutaneous Cardiovascular Interventions, Paris

  23. Saunders HS, Dyer RB, Shifrin RY et al (1995) The CT nephrogram: implications for evaluation of urinary tract disease. Radiographics 15(5):1069–1085

    Article  CAS  PubMed  Google Scholar 

  24. Savard S, Frank M, Bobrie G, Plouin PF, Sapoval M, Azizi M (2012) Eligibility for renal denervation in patients with resistant hypertension: when enthusiasm meets reality in real-life patients. J Am Coll Cardiol 60(23):2422–2424

    Article  PubMed  Google Scholar 

  25. Verloop WL, Vink EE, Voskuil M et al (2013) Eligibility for percutaneous renal denervation: the importance of a systematic screening. J Hypertens 31(8):1662–1668

    Article  CAS  PubMed  Google Scholar 

  26. Aytac SK, Yigit H, Sancak T, Ozcan H (2003) Correlation between the diameter of the main renal artery and the presence of an accessory renal artery: sonographic and angiographic evaluation. J Ultrasound Med 22(5):433–439 quiz 40–42

    PubMed  Google Scholar 

  27. Standring SG (2008) Gray’s anatomy: the anatomical basis of clinical practice, 4th edn. Churchill Livingstone/Elsevier, Philadelphia

    Google Scholar 

  28. Kawamoto S, Montgomery RA, Lawler LP, Horton KM, Fishman EK (2003) Multidetector CT angiography for preoperative evaluation of living laparoscopic kidney donors. AJR Am J Roentgenol 180(6):1633–1638

    Article  PubMed  Google Scholar 

  29. Garovic VD, Achauer MA, Kittner T, Horak D, Sheng R, Stanson AW (2010) Comparison of gadodiamide-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of renal artery stenosis: results of a phase III multicenter trial. J Magn Reson Imaging 31(2):390–397

    Article  PubMed  Google Scholar 

  30. Nomura G, Kurosaki M, Kondo T, Takeuchi J (1971) Essential hypertension and multiple renal arteries. Am Heart J 81(2):274–280

    Article  CAS  PubMed  Google Scholar 

  31. Glodny B, Cromme S, Reimer P, Lennarz M, Winde G, Vetter H (2000) Hypertension associated with multiple renal arteries may be renin-dependent. J Hypertens 18(10):1437–1444

    Article  CAS  PubMed  Google Scholar 

  32. Atherton DS, Deep NL, Mendelsohn FO (2012) Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat 25(5):628–633

    Article  PubMed  Google Scholar 

  33. Schmid A, Ditting T, Sobotka PA et al (2013) Does renal artery supply indicate treatment success of renal denervation? Cardiovasc Intervent Radiol 36(4):987–991

    Article  PubMed  Google Scholar 

  34. Id D, Kaltenbach B, Bertog SC et al (2013) Does the presence of accessory renal arteries affect the efficacy of renal denervation? J Am Coll Cardiol 6(10):1085–1091

    Article  Google Scholar 

  35. Himmel F, Bode F, Mortensen K et al (2012) Successful single-sided renal denervation approach in a patient with stenosis of an accessory renal artery. J Clin Hypertens (Greenwich) 14(3):187–188

    Article  Google Scholar 

  36. Berg M, Zhang Z, Ikonen A et al (2005) Multi-detector row CT angiography in the assessment of carotid artery disease in symptomatic patients: comparison with rotational angiography and digital subtraction angiography. AJNR Am J Neuroradiol 26(5):1022–1034

    PubMed  Google Scholar 

  37. Villablanca JP, Rodriguez FJ, Stockman T et al (2007) MDCT angiography for detection and quantification of small intracranial arteries: comparison with conventional catheter angiography. AJR Am J Roentgenol 188(2):593–602

    Article  PubMed  Google Scholar 

  38. Persu A, Jin Y, Azizi M et al (2014) Blood pressure changes after renal denervation at 10 European expert centers. J Hum Hypertens 28(3):150–156

    Google Scholar 

Download references

Conflict of interest

Takuya Okada, Olivier Pellerin, Sébastien Savard, Emmanuel Curis, Matthieu Monge, Michael Frank, Guillaume Bobrie, Masato Yamaguchi, Koji Sugimoto, Pierre-François Plouin, Michel Azizi, and Marc Sapoval declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, T., Pellerin, O., Savard, S. et al. Eligibility for Renal Denervation: Anatomical Classification and Results in Essential Resistant Hypertension. Cardiovasc Intervent Radiol 38, 79–87 (2015). https://doi.org/10.1007/s00270-014-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-0865-6

Keywords

Navigation