Skip to main content
Log in

Role for Putative Hepatocellular Carcinoma Stem Cell Subpopulations in Biological Response to Incomplete Thermal Ablation: In Vitro and In Vivo Pilot Study

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the potential role for CD44+ and CD90+ hepatocellular carcinoma (HCC) cellular subpopulations in biological response to thermal ablation-induced heat stress.

Methods

This study was approved by the institutional animal care committee. The N1S1 rat HCC cell line was subjected to sublethal heat stress (45 °C) or control (37 °C) for 10 min, costained with fluorescent-labeled antibodies against CD44, CD90, and 7-AAD after a 48-h recovery and analyzed by flow cytometry to assess the percentage of live CD44+ and CD90+ HCC cells (n = 4). Experiments were repeated with pretreatment of N1S1 cells with a dose titration of the dual PI3K-mTOR inhibitor BEZ235 or vehicle control (n = 3). Rats bearing orthotopic N1S1 tumors were subjected to ultrasound-guided partial laser ablation (n = 5) or sham ablation (n = 3), euthanized 24 h after ablation, and liver/tumor analyzed for immunohistochemical staining of CD44 and CD90. Differences between groups were compared with an unpaired t test.

Results

Sublethal heat stress induced a significant increase in the relative proportion of live CD44+ and CD90+ HCC cells compared to the control group: CD44+CD90 (5.3-fold; p = 0.0001), CD44CD90+ (2.4-fold; p = 0.003), and CD44+CD90+ (22.0-fold; p < 0.03). Inhibition of PI3K-mTOR prevented heat stress-induced enrichment of the population of live CD44+ HCC cells (p < 0.01), but not CD90+ cells (p > 0.10). Immunohistochemical analysis demonstrated preferential localization of clusters of CD44+ cells at both the tumor margin and ablation margin.

Conclusion

These studies provide experimental evidence supporting a role for HCC cells expressing the putative stem cell marker CD44 in HCC response to heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  CAS  PubMed  Google Scholar 

  2. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461–463

    Article  CAS  PubMed  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  4. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  5. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    Article  CAS  PubMed  Google Scholar 

  6. Brabletz T (2012) EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 22:699–701

    Article  CAS  PubMed  Google Scholar 

  7. Park CY, Tseng D, Weissman IL (2009) Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 17:219–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tong CM, Ma S, Guan XY (2011) Biology of hepatic cancer stem cells. J Gastroenterol Hepatol 26:1229–1237

    Article  CAS  PubMed  Google Scholar 

  10. Haraguchi N, Ishii H, Mimori K et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Investig 120:3326–3339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Henry JC, Park JK, Jiang J et al (2010) miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 403:120–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166

    Article  CAS  PubMed  Google Scholar 

  13. Ma S, Lee TK, Zheng BJ et al (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27:1749–1758

    Article  CAS  PubMed  Google Scholar 

  14. Ma S, Chan KW, Lee TK et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6:1146–1153

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita T, Forgues M, Wang W et al (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461

    Article  CAS  PubMed  Google Scholar 

  16. Terris B, Cavard C, Perret C (2010) EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol 52:280–281

    Article  CAS  PubMed  Google Scholar 

  17. Yoon SK (2012) The biology of cancer stem cells and its clinical implication in hepatocellular carcinoma. Gut Liver 6:29–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ji J, Wang XW (2012) Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 39:461–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rountree CB, Mishra L, Willenbring H (2012) Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 55:298–306

    Article  PubMed Central  PubMed  Google Scholar 

  20. Colombo F, Baldan F, Mazzucchelli S et al (2011) Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma. PLoS One 6:e21369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marquardt JU, Raggi C, Andersen JB et al (2011) Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology 54:1031–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Song K, Wu J, Jiang C (2013) Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells [review]. Oncol Rep 29:3–12

    CAS  PubMed  Google Scholar 

  23. Chen X, Lingala S, Khoobyari S et al (2011) Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J Hepatol 55:838–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee TK, Castilho A, Ma S, Ng IO (2009) Liver cancer stem cells: implications for a new therapeutic target. Liver Int 29:955–965

    Article  CAS  PubMed  Google Scholar 

  25. Martelli AM, Evangelisti C, Follo MY et al (2011) Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem 18:2715–2726

    Article  CAS  PubMed  Google Scholar 

  26. Dubrovska A, Kim S, Salamone RJ et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106:268–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sunayama J, Matsuda K, Sato A et al (2010) Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 28:1930–1939

    Article  CAS  PubMed  Google Scholar 

  28. Xu Q, Simpson SE, Scialla TJ et al (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980

    Article  CAS  PubMed  Google Scholar 

  29. Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106:4261–4268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hsu HS, Lin JH, Huang WC et al (2011) Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117:1516–1528

    Article  CAS  PubMed  Google Scholar 

  31. Prinsloo E, Setati MM, Longshaw VM, Blatch GL (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 31:370–377

    Article  CAS  PubMed  Google Scholar 

  32. Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24−; and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lencioni R, Crocetti L (2012) Local-regional treatment of hepatocellular carcinoma. Radiology 262:43–58

    Article  PubMed  Google Scholar 

  34. Tiong L, Maddern GJ (2011) Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg 98:1210–1224

    Article  CAS  PubMed  Google Scholar 

  35. Wang JH, Wang CC, Hung CH et al (2012) Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J Hepatol 56:412–418

    Article  PubMed  Google Scholar 

  36. Cho YK, Kim JK, Kim MY et al (2009) Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 49:453–459

    Article  PubMed  Google Scholar 

  37. Yin XY, Xie XY, Lu MD et al (2009) Percutaneous thermal ablation of medium and large hepatocellular carcinoma: long-term outcome and prognostic factors. Cancer 115:1914–1923

    Article  CAS  PubMed  Google Scholar 

  38. Kao WY, Chiou YY, Hung HH et al (2011) Risk factors for long-term prognosis in hepatocellular carcinoma after radiofrequency ablation therapy: the clinical implication of aspartate aminotransferase–platelet ratio index. Eur J Gastroenterol Hepatol 23:528–536

    CAS  PubMed  Google Scholar 

  39. Ng KK, Poon RT, Lo CM et al (2008) Analysis of recurrence pattern and its influence on survival outcome after radiofrequency ablation of hepatocellular carcinoma. J Gastrointest Surg 12:183–191

    Article  PubMed  Google Scholar 

  40. Liu Y, Zheng Y, Li S et al (2013) Percutaneous microwave ablation of larger hepatocellular carcinoma. Clin Radiol 68:21–26

    Article  CAS  PubMed  Google Scholar 

  41. Thompson SM, Callstrom MR, Knudsen B et al (2012) Development and preliminary testing of a translational model of hepatocellular carcinoma for MR imaging and interventional oncologic investigations. J Vasc Interv Radiol 23:385–395

    Article  PubMed Central  PubMed  Google Scholar 

  42. Thompson SM, Callstrom MR, Knudsen B et al (2013) AS30D model of hepatocellular carcinoma: tumorigenicity and preliminary characterization by imaging, histopathology, and immunohistochemistry. Cardiovasc Intervent Radiol 36:198–203

    Article  PubMed Central  PubMed  Google Scholar 

  43. Yamashita T, Honda M, Nio K et al (2010) Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-fluorouracil by inducing hepatocytic differentiation. Cancer Res 70:4687–4697

    Article  CAS  PubMed  Google Scholar 

  44. Wang XQ, Ongkeko WM, Chen L et al (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52:528–539

    Article  CAS  PubMed  Google Scholar 

  45. Cheung ST, Cheung PF, Cheng CK et al (2011) Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140:344–355

    Article  CAS  PubMed  Google Scholar 

  46. Lingala S, Cui YY, Chen X et al (2010) Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol 89:27–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hermansen SK, Christensen KG, Jensen SS, Kristensen BW (2011) Inconsistent immunohistochemical expression patterns of four different CD133 antibody clones in glioblastoma. J Histochem Cytochem 59:391–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mather JP (2012) In vitro models. Stem Cells 30:95–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported by CTSA Grant TL1 TR000137 from the National Center for Advancing Translational Science (NCATS). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Additional research support provided in part by a SIR Foundation allied scientist training Grant. Infrastructure support was provided by NIH construction grant NIH C06 RR018898.

Conflict of interest

Mr. Scott Thompson received a research grant from the SIR Foundation—Allied Scientist Training Grant. Dr. Lewis Roberts received research grants from Bristol Myers-Squibb, Merck, Nordion, and Bayer. Dr. Matthew Callstrom, Ms. Kim Butters, Ms. Shari Sutor, Mr. Bruce Knudsen, Dr. Joseph Grande, and Dr. David Woodrum declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, S.M., Callstrom, M.R., Butters, K.A. et al. Role for Putative Hepatocellular Carcinoma Stem Cell Subpopulations in Biological Response to Incomplete Thermal Ablation: In Vitro and In Vivo Pilot Study. Cardiovasc Intervent Radiol 37, 1343–1351 (2014). https://doi.org/10.1007/s00270-013-0828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-013-0828-3

Keywords

Navigation