Skip to main content

Advertisement

Log in

In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas.

Methods

Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves.

Results

Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularity of the single-antenna ablation zones measured 0.64 ± 0.12, with a diameter of 35.7 ± 8.7 mm along the axis of the antenna and 32.7 ± 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 ± 7.7 along the axis of the antenna and 54.8 ± 8.5 mm perpendicular to the feeding point; circularity was 0.70 ± 0.10

Conclusions

A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of ≤4 cm with no heat sink effect from vessels of ≤6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Baere T, Palussiere J, Auperin A et al (2006) Mid-term local efficacy and survival after radiofrequency ablation of lung tumors with a minimum follow-up of 1 year: prospective evaluation. Radiology 240:587–596

    Article  PubMed  Google Scholar 

  2. Elias D, Baton O, Sideris L et al (2004) Local recurrences after intraoperative radiofrequency ablation of liver metastases: a comparative study with anatomic and wedge resections. Ann Surg Oncol 11:500–505

    Article  PubMed  Google Scholar 

  3. Lu DS, Raman SS, Limanond P et al (2003) Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol 14:1267–1274

    Article  PubMed  Google Scholar 

  4. Gillams AR, Lees WR (2008) Radiofrequency ablation of lung metastases: factors influencing success. Eur Radiol 18:672–677

    Article  PubMed  Google Scholar 

  5. Brace CL (2009) Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–143

    Article  PubMed  Google Scholar 

  6. Crocetti L, Bozzi E, Faviana P et al (2010) Thermal ablation of lung tissue: in vivo experimental comparison of microwave and radiofrequency. Cardiovasc Intervent Radiol 33:818–827

    Article  PubMed  Google Scholar 

  7. Schramm W, Yang D, Wood BJ et al (2007) Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Open Biomed Eng J 1:47–52

    PubMed  Google Scholar 

  8. Lu MD, Xu HX, Xie XY et al (2005) Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 40:1054–1060

    Article  PubMed  Google Scholar 

  9. Iannitti DA, Martin RC, Simon CJ et al (2007) Hepatic tumor ablation with clustered microwave antennae: the US Phase II trial. HPB (Oxford) 9:120–124

    Article  Google Scholar 

  10. Wolf FJ, Grand DJ, Machan JT et al (2008) Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247:871–879

    Article  PubMed  Google Scholar 

  11. Kawai T, Kaminou T, Sugiura K et al (2009) Creation of a tumor-mimic model using a muscle paste for radiofrequency ablation of the lung. Cardiovasc Intervent Radiol 32:296–302

    Article  PubMed  CAS  Google Scholar 

  12. Morrison P, vanSonnenberg E, Shankar S et al (2005) Radiofrequency ablation of thoracic lesions: part 1, experiments in the normal porcine thorax. AJR Am J Roentgenol 184:375–380

    PubMed  Google Scholar 

  13. Miao Y, Ni Y, Bosmans H et al (2001) Radiofrequency ablation for eradication of pulmonary tumor in rabbits. J Surg Res 99:265–271

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto A, Nakamura K, Matsuoka T et al (2005) Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. AJR Am J Roentgenol 185:1299–1306

    Article  PubMed  Google Scholar 

  15. Zhu JC, Yan TD, Morris DL (2008) A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol 15:1765–1774

    Article  PubMed  Google Scholar 

  16. Lee JM, Jin GY, Goldberg SN et al (2004) Percutaneous radiofrequency ablation for inoperable non–small cell lung cancer and metastases: preliminary report. Radiology 230:125–134

    Article  PubMed  Google Scholar 

  17. Akeboshi M, Yamakado K, Nakatsuka A et al (2004) Percutaneous radiofrequency ablation of lung neoplasms: initial therapeutic response. J Vasc Interv Radiol 15:463–470

    Article  PubMed  Google Scholar 

  18. Steinke K, Glenn D, King J et al (2003) Percutaneous pulmonary radiofrequency ablation: difficulty achieving complete ablation in big lung lesions. Br J Radiol 76(910):742–745

    Article  PubMed  CAS  Google Scholar 

  19. Anderson EM, Lees WR, Gillams AR (2009) Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors. Cardiovasc Intervent Radiol 32:478–483

    Article  PubMed  Google Scholar 

  20. Simon CF, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25:S69–S83

    Article  PubMed  Google Scholar 

  21. Hoffmann CO, Rosenberg C, Linder A et al (2012) Residual tumor after laser ablation of human non-small-cell lung cancer demonstrated by ex vivo staining: correlation with invasive temperature measurements. MAGMA 25:63–74

    Article  PubMed  CAS  Google Scholar 

  22. Fielding DI, Buonaccorsi G, Cowley G et al (2001) Interstitial laser photocoagulation and interstitial photodynamic therapy of normal lung parenchyma in the pig. Lasers Med Sci 16:26–33

    Article  PubMed  CAS  Google Scholar 

  23. Ahmed M, Liu Z, Lukyanov AN et al (2005) Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 235:469–477

    Article  PubMed  Google Scholar 

  24. Lee JM, Han JK, Chang JM et al (2006) Radiofrequency ablation in pig lungs: in vivo comparison of internally cooled, perfusion and multitined expandable electrodes. Br J Radiol 79(943):562–571

    Article  PubMed  CAS  Google Scholar 

  25. Seror O, Lepetit-Coiffe M, Le Bail B et al (2008) Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol 18:408–416

    Article  PubMed  Google Scholar 

  26. Liang P, Wang Y, Yu X, Dong B (2009) Malignant liver tumors: treatment with percutaneous microwave ablation—complications among cohort of 1136 patients. Radiology 251:933–940

    Article  PubMed  Google Scholar 

  27. Martin RC, Scoggins CR, McMasters KM (2010) Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol 17:171–178

    Article  PubMed  Google Scholar 

  28. Brace CL, Hinshaw JL, Laeseke PF et al (2009) Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 251:705–711

    Article  PubMed  Google Scholar 

  29. Hiraki T, Sakurai J, Tsuda T et al (2006) Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors: evaluation based on a preliminary review of 342 tumors. Cancer 107:2873–2880

    Article  PubMed  Google Scholar 

  30. Brace CL, Diaz TA, Hinshaw JL et al (2010) Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol 21:1280–1286

    Article  PubMed  Google Scholar 

  31. Wright AS, Lee FT Jr, Mahvi DM (2003) Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol 10:275–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Animals, microwave generators, and antennas were supplied by Hospital Service Spa, Aprilia, Italy. No salary or fees were paid to any investigator.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Planché.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planché, O., Teriitehau, C., Boudabous, S. et al. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model. Cardiovasc Intervent Radiol 36, 221–228 (2013). https://doi.org/10.1007/s00270-012-0399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-012-0399-8

Keywords

Navigation