Skip to main content

Advertisement

Log in

Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model.

Materials and Methods

Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, α-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant.

Results

Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 μm2 [n = 15) in the WT group compared with only 8.4 (*1000 μm2 [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein.

Conclusion

RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schleicher E, Friess U (2007) Oxidative stress, AGE, and atherosclerosis. Kidney Int 2007 106(1):S17–S26

    Google Scholar 

  2. Duda SH, Bosiers M, Lammer J et al (2006) Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther 13(6):701–710

    Article  PubMed  Google Scholar 

  3. Ritthaler U, Deng Y, Zhang Y et al (1995) Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol 146(3):688–694

    PubMed  CAS  Google Scholar 

  4. Sakaguchi T, Yan SF, Yan SD et al (2003) Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest 111(7):959–972

    PubMed  CAS  Google Scholar 

  5. Yamagishi S, Matsui T, Nakamura K (2007) Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr Drug Targets 8(10):1138–1143

    Article  PubMed  CAS  Google Scholar 

  6. Ihara Y, Egashira K, Nakano K et al (2007) Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol 43(4):455–464

    Article  PubMed  CAS  Google Scholar 

  7. Wang L, Li S, Jungalwala FB (2008) Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth. J Neurosci Res 86(6):1254–1266

    Article  PubMed  CAS  Google Scholar 

  8. Tesarova P, Kalousova M, Jachymova M et al (2007) Receptor for advanced glycation end products (RAGE)–soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 25(8):720–725

    Article  PubMed  CAS  Google Scholar 

  9. Constien R, Forde A, Liliensiek B et al (2001) Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30(1):36–44

    Article  PubMed  CAS  Google Scholar 

  10. Feuls R, Chereshnev I, Bantleon R et al (2003) Microvascular denudation of the femoral artery of the mouse as a model for restenosis. Rofo 175(7):952–957

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi M, Inoue K, Warabi E et al (2005) A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb 12(3):138–142

    Article  PubMed  Google Scholar 

  12. Jansson G (1991) Oestrogen-induced enhancement of myeloperoxidase activity in human polymorphonuclear leukocytes—a possible cause of oxidative stress in inflammatory cells. Free Radic Res Commun 14(3):195–208

    Article  PubMed  CAS  Google Scholar 

  13. Miyata T, Ishikawa S, Asahi K et al (1999) 2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage. FEBS Lett 445(1):202–206

    Article  PubMed  CAS  Google Scholar 

  14. Anderson MM, Requena JR, Crowley JR et al (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest 104(1):103–113

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Qu X, Schmidt AM (1998) Sp1-binding elements in the promoter of RAGE are essential for amphoterin-mediated gene expression in cultured neuroblastoma cells. J Biol Chem 273(47):30870–30878

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272(26):16498–16506

    Article  PubMed  CAS  Google Scholar 

  17. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt AM, Stern D (2000) Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2(5):430–436

    Article  PubMed  CAS  Google Scholar 

  19. Lander HM, Tauras JM, Ogiste JS et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814

    Article  PubMed  CAS  Google Scholar 

  20. Bierhaus A, Schiekofer S, Schwaninger M et al (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50(12):2792–2808

    Article  PubMed  CAS  Google Scholar 

  21. Bierhaus A, Nawroth PP (2009) Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52(11):2251–2263

    Article  PubMed  CAS  Google Scholar 

  22. Oldfield MD, Bach LA, Forbes JM et al (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108(12):1853–1863

    PubMed  CAS  Google Scholar 

  23. Throckmorton DC, Brogden AP, Min B et al (1995) PDGF and TGF-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 48(1):111–117

    Article  PubMed  CAS  Google Scholar 

  24. Farb A, Kolodgie FD, Hwang JY et al (2004) Extracellular matrix changes in stented human coronary arteries. Circulation 110(8):940–947

    Article  PubMed  CAS  Google Scholar 

  25. Ikonomidis JS, Jones JA, Barbour JR et al (2007) Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg 133(4):1028–1036

    Article  PubMed  CAS  Google Scholar 

  26. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115(Pt 19):3719–3727

    Article  PubMed  CAS  Google Scholar 

  27. Hofmann Bowman M, Wilk J, Heydemann A et al (2010) S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res 106(1):145–154

    Article  PubMed  CAS  Google Scholar 

  28. Kamioka M, Ishibashi T, Ohkawara H et al (2011) Involvement of membrane type 1-matrix metalloproteinase (MT1-MMP) in RAGE activation signaling pathways. J Cell Physiol 226(6):1554–1563

    Article  PubMed  CAS  Google Scholar 

  29. Schober W, Wiskirchen J, Kehlbach R et al (2002) Antiproliferative effects of the antiallergic agent azelastine on human aortic smooth-muscle cells: an in vitro study. Invest Radiol 37(5):248–253

    Article  PubMed  CAS  Google Scholar 

  30. Kubota Y, Kichikawa K, Uchida H et al (1995) Pharmacologic treatment of intimal hyperplasia after metallic stent placement in the peripheral arteries. An experimental study. Invest Radiol 30(9):532–537

    Article  PubMed  CAS  Google Scholar 

  31. Tepe G, Brehme U, Seeger H et al (2002) Endothelin A receptor antagonist LU 135252 inhibits hypercholesterolemia-induced, but not deendothelialization-induced, atherosclerosis in rabbit arteries. Invest Radiol 37(6):349–355

    Article  PubMed  CAS  Google Scholar 

  32. Watson AM, Soro-Paavonen A, Sheehy K et al (2011) Delayed intervention with AGE inhibitors attenuates the progression of diabetes-accelerated atherosclerosis in diabetic apolipoprotein E knockout mice. Diabetologia 54:681–689

    Article  PubMed  CAS  Google Scholar 

  33. Yamagishi S, Nakamura K, Matsui T et al (2008) Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Invest Drugs 17(7):983–996

    Article  CAS  Google Scholar 

  34. Takagi T, Yamamuro A, Tamita K et al (2003) Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 146(2):E5

    Article  PubMed  Google Scholar 

  35. Choi D, Kim SK, Choi SH et al (2004) Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 27(11):2654–2660

    Article  PubMed  CAS  Google Scholar 

  36. Barile GR, Schmidt AM (2007) RAGE and its ligands in retinal disease. Curr Mol Med 7(8):758–765

    Article  PubMed  CAS  Google Scholar 

  37. van Zoelen MA, Yang H, Florquin S et al (2009) Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock 31(3):280–284

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the interdisciplinary center for clinical research, University of Tübingen. This publication reflects only the authors’ views. The authors are not liable for any use that may be made of information herein.

Conflict of interest

Gerd Grözinger has no conflict of interest to declare. Jörg Schmehl has no conflict of interest to declare. Rüdiger Bantleon has no conflict of interest to declare. Rainer Kehlbach has no conflict of interest to declare. Tarun Mehra has no conflict of interest to declare. Claus D. Claussen has no conflict of interest to declare. Benjamin Wiesinger has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schmehl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grözinger, G., Schmehl, J., Bantleon, R. et al. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation. Cardiovasc Intervent Radiol 35, 1439–1447 (2012). https://doi.org/10.1007/s00270-011-0319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0319-3

Keywords

Navigation