Skip to main content

Advertisement

Log in

Syringe and Needle Size, Syringe Type, Vacuum Generation, and Needle Control in Aspiration Procedures

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Syringes are used for diagnostic fluid aspiration and fine-needle aspiration biopsy in interventional procedures. We determined the benefits, disadvantages, and patient safety implications of syringe and needle size on vacuum generation, hand force requirements, biopsy/fluid yield, and needle control during aspiration procedures.

Materials and Methods

Different sizes (1, 3, 5, 10, and 20 ml) of the conventional syringe and aspirating mechanical safety syringe, the reciprocating procedure device, were studied. Twenty operators performed aspiration procedures with the following outcomes measured: (1) vacuum (torr), (2) time to vacuum (s), (3) hand force to generate vacuum (torr-cm2), (4) operator difficulty during aspiration, (5) biopsy yield (mg), and (6) operator control of the needle tip position (mm).

Results

Vacuum increased tissue biopsy yield at all needle diameters (P < 0.002). Twenty-milliliter syringes achieved a vacuum of −517 torr but required far more strength to aspirate, and resulted in significant loss of needle control (P < 0.002). The 10-ml syringe generated only 15% less vacuum (−435 torr) than the 20-ml device and required much less hand strength. The mechanical syringe generated identical vacuum at all syringe sizes with less hand force (P < 0.002) and provided significantly enhanced needle control (P < 0.002).

Conclusions

To optimize patient safety and control of the needle, and to maximize fluid and tissue yield during aspiration procedures, a two-handed technique and the smallest syringe size adequate for the procedure should be used. If precise needle control or one-handed operation is required, a mechanical safety syringe should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tani E, Seregard S, Rupp G et al (2006) Fine-needle aspiration cytology and immunocytochemistry of orbital masses. Diagn Cytopathol 34:1–5

    Article  PubMed  Google Scholar 

  2. Quinn SF, Nelson HA, Demlow TA (1994) Thyroid biopsies: fine-needle aspiration biopsy versus spring-activated core biopsy needle in 102 patients. J Vasc Interv Radiol 5:619–623

    Article  PubMed  CAS  Google Scholar 

  3. Althoff CE, Hermann KG, Wiechen K et al (2006) Formalin-fixed blood clots—additional histological findings on computed tomography-guided fine-needle aspiration biopsies in comparison with core biopsies. J Comput Assist Tomogr 30:386–390

    Article  PubMed  Google Scholar 

  4. Jain D (2002) Diagnosis of hepatocellular carcinoma: fine needle aspiration cytology or needle core biopsy. J Clin Gastroenterol 35(5 suppl 2):S101–S108

    Article  PubMed  Google Scholar 

  5. Coldewey J, Stewart IS (2002) Comparison of fine needle aspiration cytology and needle core biopsy in the diagnosis of radiologically detected abdominal lesions. J Clin Pathol 55:93–97

    Article  PubMed  Google Scholar 

  6. Aviram G, Schwartz DS, Meirsdorf S et al (2005) Transthoracic needle biopsy of lung masses: a survey of techniques. Clin Radiol 60:370–374

    Article  PubMed  CAS  Google Scholar 

  7. Oyama T, Koibuchi Y, McKee G (2004) Core needle biopsy (CNB) as a diagnostic method for breast lesions: comparison with fine needle aspiration cytology (FNA). Breast Cancer 11:339–342

    Article  PubMed  Google Scholar 

  8. Masood S (2005) Core needle biopsy versus fine needle aspiration biopsy: are there similar sampling and diagnostic issues? Clin Lab Med 25:679–688

    Article  PubMed  Google Scholar 

  9. Cochrane L, Ainscough M, Alfirevic Z (2003) The influence of needle and syringe size on chorionic villus sampling of term placentae: a randomised trial. Prenat Diagn 23:1049–1051

    Article  PubMed  Google Scholar 

  10. Cannon CR, Richardson LD, Replogle W, Halloran R (1996) Quantitative evaluation of fine-needle aspiration. Otolaryngol Head Neck Surg 114:407–412

    Article  PubMed  CAS  Google Scholar 

  11. Yankelevitz DF, Hayt D, Henschke CI (1995) Transthoracic needle biopsy. What size syringe? Clin Imaging 19:208–209

    Article  PubMed  CAS  Google Scholar 

  12. Bastard JP, Cuevas J, Cohen S et al (1994) Percutaneous adipose tissue biopsy by mini-liposuction for metabolic studies. JPEN J Parenter Enteral Nutr 18:466–468

    Article  PubMed  CAS  Google Scholar 

  13. Sandrucci F, Vismara L, Molinari S et al (1998) Percutaneous needle biopsy guided with computerized tomography of the chest. Personal experience with 1, 605 cases. Radiol Med 96:375–383

    PubMed  CAS  Google Scholar 

  14. Hopper KD, Abendroth CS, Sturtz KW et al (1992) Fine-needle aspiration biopsy for cytopathologic analysis: utility of syringe handles, automated guns, and the nonsuction method. Radiology 185:819–824

    PubMed  CAS  Google Scholar 

  15. Smith EH (1984) The hazards of fine-needle aspiration biopsy. Ultrasound Med Biol 10:629–634

    Article  PubMed  CAS  Google Scholar 

  16. Bates T, Davidson T, Mansel RE (2002) Litigation for pneumothorax as a complication of fine-needle aspiration of the breast. Br J Surg 89:134–137

    PubMed  CAS  Google Scholar 

  17. Gordon CE, Feller-Kopman D, Balk EM, Smetana GW (2010) Pneumothorax following thoracentesis: a systematic review and meta-analysis. Arch Intern Med 170:332–339

    Article  PubMed  Google Scholar 

  18. Drinkovic I, Brkljacic B (1996) Cases of lethal complications following ultrasound guided percutaneous fine-needle biopsy of the liver. Cardiovasc Intervent Radiol 19:360–363

    Article  PubMed  CAS  Google Scholar 

  19. Rocke DA (1984) Percutaneous lung biopsy. Management of tracheobronchial haemorrhage. Anaesthesia 39:888–890

    Article  PubMed  CAS  Google Scholar 

  20. Windsor RE, Storm S, Sugar R (2003) Prevention and management of complications resulting from common spinal injections. Pain Physician 6:473–483

    PubMed  Google Scholar 

  21. Shevland JE (1991) Right ventricular perforation: a rare complication of percutaneous lung biopsy. J Thorac Imaging 6:85–86

    Article  PubMed  CAS  Google Scholar 

  22. Joint Commission. National patient safety goals. http://www.jointcommission.org/PatientSafety/NationalPatientSafetyGoals/. Accessed October 15, 2010

  23. The patient safety and quality improvement act of 2005 (2005) US Congress, Library of Congress. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=109_cong_public_laws&docid=f:publ041.109. Accessed October 15, 2010

  24. Needlestick Safety and Prevention Act (2000) US Congress. Library of Congress. http://www.glin.gov/view.action?glinID=136217#. Accessed October 15, 2010

  25. Heget JR, Bagian JP, Lee CZ et al (2002) Eisenberg Patient Safety Awards. System innovation: Veterans Health Administration National Center for Patient Safety. Jt Comm J Qual Improv 28:660–665

    PubMed  Google Scholar 

  26. Thomas AN, Galvin I (2008) Patient safety incidents associated with equipment in critical care: a review of reports to the UK National Patient Safety Agency. Anaesthesia 63:1193–1197

    Article  PubMed  CAS  Google Scholar 

  27. Duncan JR (2008) Strategies for improving safety and quality in interventional radiology. J Vasc Interv Radiol 19:3–7

    Article  PubMed  Google Scholar 

  28. Liang BA, Riley W, Hamman W, Rutherford W (2007) The patient safety and quality improvement act of 2005: provisions and potential. Am J Med Qual 22:8–12

    Article  PubMed  CAS  Google Scholar 

  29. Sibbitt RR, Sibbitt WL Jr, Nunez SE et al (2006) Control and performance characteristics of eight different suction biopsy devices. J Vasc Interv Radiol 17:1657–1669

    Article  PubMed  Google Scholar 

  30. Sibbitt WL Jr, Sibbitt RR, Michael AA et al (2006) Physician control of needle and syringe during aspiration–injection procedures with the new reciprocating syringe. J Rheumatol 33:771–778

    PubMed  Google Scholar 

  31. Hopper KD, Grenko RT, Fisher AI et al (1996) Capillary versus aspiration biopsy: effect of needle size and length on the cytopathological specimen quality. Cardiovasc Intervent Radiol 19:341–344

    Article  PubMed  CAS  Google Scholar 

  32. Savage CA, Hopper KD, Abendroth CS et al (1995) Fine-needle aspiration biopsy versus fine-needle capillary (nonaspiration) biopsy: in vivo comparison. Radiology 195:815–819

    PubMed  CAS  Google Scholar 

  33. Haddadi-Nezhad S, Larijani B, Tavangar SM, Nouraei SM (2003) Comparison of fine-needle-nonaspiration with fine-needle-aspiration technique in the cytologic studies of thyroid nodules. Endocr Pathol 14:369–373

    Article  PubMed  Google Scholar 

  34. Ciatto S, Catania S, Bravetti P et al (1991) Fine-needle cytology of the breast: a controlled study of aspiration versus nonaspiration. Diagn Cytopathol 7:125–127

    Article  PubMed  CAS  Google Scholar 

  35. Moorjani GR, Michael AA, Peisjovich A et al (2008) Patient pain and tissue trauma during syringe procedures: a randomized controlled trial. J Rheumatology 35:1124–1129

    Google Scholar 

  36. Sibbitt WL Jr, Peisajovich A, Michael AA et al (2009) Does sonographic needle guidance affect the clinical outcome of intraarticular injections? J Rheumatol 36:1892–1902

    Article  PubMed  Google Scholar 

  37. Calda P, Brestak M (2009) Amniovacucentesis vs standard syringe technique for amniocentesis: experience with 1219 cases. Am J Obstet Gynecol 201:593.e1–593.e3

    Article  Google Scholar 

  38. Kahveci R, Rehimli M, Esmer A et al (2009) A useful technique to obtain adequate negative pressure for liposuction. J Plast Reconstr Aesthet Surg 62:e604–e605

    Article  PubMed  CAS  Google Scholar 

  39. Battagliarin G, Lanna M, Coviello D et al (2009) A randomized study to assess two different techniques of aspiration while performing transabdominal chorionic villus sampling. Ultrasound Obstet Gynecol 33:169–172

    Article  PubMed  CAS  Google Scholar 

  40. Grillo A, Fusaroli P, Naik A et al (2006) Home-made vacuum syringe for endoscopic ultrasound-guided fine-needle aspiration. Endoscopy 38(suppl 2):E56

    Article  PubMed  Google Scholar 

  41. Freitas Júnior R, Moreira MA, Souza GA et al (2005) Fine-needle aspiration biopsy for breast lesions: a comparison between two devices for obtaining cytological samples. Sao Paulo Med J 123:271–276

    Article  PubMed  Google Scholar 

  42. Orbach D, Schaff E (2004) Which cannulae fit the Ipas manual vacuum aspiration syringe? Contraception 69:171–173

    Article  PubMed  Google Scholar 

  43. Jaques PF, Mauro MA, Keefe B (1992) US guidance for vascular access. Technical note. J Vasc Interv Radiol 3:427–430

    Article  PubMed  CAS  Google Scholar 

  44. Ezri T, Khazin V, Houri S et al (2002) Removal of dead space volume from arterial catheter: how much is enough? Pediatr Crit Care Med 3:141–143

    Article  PubMed  Google Scholar 

  45. Gerstein NS, Martin HB, Toma G et al (2009) Introduction of new safety technologies into central venous access. J Clin Anesth 21:363–365

    Article  PubMed  Google Scholar 

  46. Kreula J, Virkkunen P, Bondestam S (1990) Effect of suction on specimen size in fine-needle aspiration biopsy. Invest Radiol 25:1175–1181

    Article  PubMed  CAS  Google Scholar 

  47. Sibbitt RR, Sibbitt WL Jr, Palmer DJ, Bankhurst AD (2008) Needle aspiration of peritonsillar abscess with the new safety technology: the reciprocating procedure device. Otolaryngol Head Neck Surg 139:307–309

    Article  PubMed  Google Scholar 

  48. Sibbitt RR, Palmer DJ, Sibbitt WL Jr (2008) Introduction of safety technologies into sclerotherapy of varicose veins. Vasc Endovascular Surg 42:446–455

    Article  PubMed  Google Scholar 

  49. Sibbitt RR, Palmer DJ, Sibbitt WL Jr, Bankhurst AD (2009) Integration of new safety technologies into needle aspiration of breast cysts. Arch Gynecol Obstet 279:285–292

    Article  PubMed  Google Scholar 

  50. Sibbitt RR, Palmer DJ, Sibbitt WL Jr (2009) Reciprocating procedure device for thyroid cyst aspiration and ablative sclerotherapy. J Laryngol Otol 123:343–345

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

There was no industry support for this study. All devices were purchased, not donated to this study. Drs. Haseler, R. Sibbitt, Michael, Gasparovic, and Bankhurst have no potential or real conflicts of interest in this study. Dr. Wilmer L. Sibbitt Jr. is funded by Research Grant RO1 HLO77422-01-A3 from the U.S. National Institutes of Health and is a full-time professor at and an employee of the University of New Mexico. The University of New Mexico is the owner of the RPD mechanical syringe technology. Dr. W. Sibbitt also is an expert consultant for Becton–Dickinson, Intelligence Management Solutions, Ferring Pharmaceuticals, Avanca Medical Devices, Avasca, and MediTech Duopross. Dr. Sibbitt holds stock in Apple, Celgene, Avanca, Avasca, Sun Microsystems, Symantec, and Java. In 2009, Abbott Vascular obtained four patents from Dr. Sibbitt, but these do not relate to the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilmer L. Sibbitt Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haseler, L.J., Sibbitt, R.R., Sibbitt, W.L. et al. Syringe and Needle Size, Syringe Type, Vacuum Generation, and Needle Control in Aspiration Procedures. Cardiovasc Intervent Radiol 34, 590–600 (2011). https://doi.org/10.1007/s00270-010-0011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-010-0011-z

Keywords

Navigation