Skip to main content
Log in

Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study in a Rabbit Model

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the technical feasibility of CT-guided magnetic thermoablation for the treatment of malignant kidney tumors in a VX2 tumor rabbit model. VX2 tumors were implanted into the kidneys of five rabbits and allowed to grow for 2 weeks. After preinterventional CT perfusion imaging, CT-guided injection of superparamagnetic iron oxide particles (300 μl) was performed, followed by exposure of the animals to an alternating electromagnetic field for 15 min (≈0.32 kA/m). Then animals underwent CT perfusion imaging again. Afterward, animals were sacrificed and kidneys were dissected for macroscopic and histological evaluation. Changes in perfusion before and after exposure to the alternating magnetic field were analyzed. In one animal no tumor growth could be detected so the animal was used for optimization of the ablation procedure including injection technique and peri-interventional cross-sectional imaging (CT, MRI). After image-guided intratumoral injection of ferrofluids, the depiction of nanoparticle distribution by CT correlated well with macroscopic evaluation of the dissected kidneys. MRI was limited due to severe susceptibility artefacts. Postinterventional CT perfusion imaging revealed a perfusion deficiency around the ferrofluid deposits. Histological workup showed different zones of thermal damage adjacent to the ferrofluid deposits. In conclusion, CT-guided magnetic thermoablation of malignant kidney tumors is technically feasible in an animal model and results in a perfusion deficiency indicating tumor necrosis as depicted by CT perfusion imaging and shown in histological evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Pantuck AJ, Zisman A, Belldegrun AS (2001) The changing natural history of renal cell carcinoma. J Urol 166:1611–1623

    Article  CAS  PubMed  Google Scholar 

  3. Robson CJ, Churchill BM, Anderson W (1969) The results of radical nephrectomy for renal cell carcinoma. J Urol 101:297–301

    CAS  PubMed  Google Scholar 

  4. Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 166:6–18

    Article  CAS  PubMed  Google Scholar 

  5. Mahnken AH, Günther RW, Tacke J (2004) Radiofrequency ablation of renal tumors. Eur Radiol 14:1449–1455

    Article  PubMed  Google Scholar 

  6. Gneveckow U, Jordan A, Scholz R et al (2004) Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–1451

    Article  PubMed  Google Scholar 

  7. Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol 35:170–179

    Article  CAS  PubMed  Google Scholar 

  8. Mitsumori M, Hiraoka M, Shibata T et al (1996) Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepatogastroenterology 43:1431–1437

    CAS  PubMed  Google Scholar 

  9. Maier-Hauff K, Rothe R, Scholz R et al (2005) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 29:1–8

    Google Scholar 

  10. Khalafalla SE, Reimers GW (1980) Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans Magn 16:178–183

    Article  Google Scholar 

  11. Hodenius M, Niendorf T, Krombach GA et al (2008) Synthesis, physicochemical characterization and MR relaxometry of aqueous ferrofluids. J Nanosci Nanotechnol 8:1–11

    Article  Google Scholar 

  12. Gilchrist RK, Medal R, Shorey WD et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  CAS  PubMed  Google Scholar 

  13. Hilger I, Hiergeist R, Hergt R et al (2002) Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol 37:580–586

    Article  CAS  PubMed  Google Scholar 

  14. Hilger I, Andrä W, Hergt R et al (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    CAS  PubMed  Google Scholar 

  15. Hilger I, Andrä W, Bähring R et al (1997) Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Invest Radiol 32:705–712

    Article  CAS  PubMed  Google Scholar 

  16. Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermal ablation in muscle tissue using iron oxide particles. An in vitro study. Invest Radiol 35:170–179

    Article  CAS  PubMed  Google Scholar 

  17. Johannsen M, Thiesen B, Jordan A et al (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64:283–292

    Article  PubMed  Google Scholar 

  18. Gillams AR, Lees WR (2005) CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Interv Radiol 28:476–480

    Article  CAS  Google Scholar 

  19. Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermometry of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661

    Article  PubMed  Google Scholar 

  20. Salloum M, Ma RH, Weeks D et al (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hypertherm 24:337–345

    Article  CAS  Google Scholar 

  21. Bruners P, Hodenius M, Baumann M et al (2008) Magnetic thermal ablation using ferrofluids: influence of administration mode on biological effect in different porcine tissues. Cardiovasc Interv Radiol 31(6):1193–1199

    Article  Google Scholar 

  22. Moroz P, Pardoe H, Jones KJ et al (2002) Arterial embolization hyperthermia: hepatic iron particle distribution and its potential determination by magnetic resonance imaging. Phys Med Biol 47:1591–1602

    Article  PubMed  Google Scholar 

  23. Moroz P, Jones SK, Gray BN (2002) Arterial embolization hyperthermia in porcine renal tissue. J Surg Res 105:209–214

    Article  CAS  PubMed  Google Scholar 

  24. Dudeck O, Bogusiewicz K, Pinkernelle J et al (2006) Local arterial infusion of superparamagnetic iron oxide particles in hepatocellular carcinoma: a feasibility and 3T MRI study. Invest Radiol 41:527–535

    Article  PubMed  Google Scholar 

  25. Sahani DV, Holalkere NS, Mueller PR et al (2007) Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 243:736–743

    Article  PubMed  Google Scholar 

  26. Faria SC, Ng CS, Hess KR et al (2007) CT quantification of effects of Thalidomide in patients with metastatic renal cell carcinoma. AJR 189:378–385

    Article  PubMed  Google Scholar 

  27. Wust P, Cho CH, Hildebrandt B et al (2006) Thermal monitoring: invasive, minimal-invasive and non-invasive approaches. Int J Hypertherm 22:255–262

    Article  Google Scholar 

  28. Tilly W, Wust P, Rau B et al (2001) Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. Int J Hypertherm 17:172–188

    Article  CAS  Google Scholar 

  29. Liu Z, Ahmed M, Gervais D et al (2008) Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures. J Vasc Interv Radiol 19:1079–1086

    Article  PubMed  Google Scholar 

  30. Hill SA, Denekamp J (1982) Histology as a method for determining thermal gradients in heated tumours. Br J Radiol 55:651–656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Porstmann grant from the German Radiological Society (DRG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Bruners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruners, P., Braunschweig, T., Hodenius, M. et al. Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study in a Rabbit Model. Cardiovasc Intervent Radiol 33, 127–134 (2010). https://doi.org/10.1007/s00270-009-9583-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9583-x

Keywords

Navigation