Skip to main content
Log in

Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Refined data on the crystal structure, chemical composition and properties of jouravskite, ideally Ca3Mn4+(SO4)(CO3)(OH)6·12H2O, have been obtained on a sample from N’Chwaning 3 Mine, Kuruman, Kalahari manganese field, Northern Cape Province, South Africa. The chemical composition determined using a combination of different methods (including ICP-OES, gas chromatography of products of ignition and electron microprobe) is (wt%): CaO 25.88, SrO 0.19, BaO 0.23, B2O3 0.39, Fe2O3 1.01, MnO2 12.00, SiO2 0.06, CO2 6.8, SO3 12.44, H2O 41.8, total 100.80, which corresponds to the empirical formula (Z = 2): (Са2.98Sr0.01Ba0.01)Σ3.00(Mn4+0.89Fe3+0.08Si0.01)Σ0.98{(SO4)1.00(CO3)1.00[B(OH)4]0.07}Σ2.07(OH)5.78·11.94H2O. Tetravalent state of Mn was confirmed by Mn K-edge XANES spectroscopy. The IR spectrum of jouravskite contains characteristic bands of Mn4+(OH)6 octahedra, CO32− and SO42− anions, and H2O molecules. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.0332. Jouravskite is isostructural with thaumasite. The parameters of the hexagonal (space group P63) unit cell are: a = 11.07129(14) Å, c = 10.62650(14) Å, V = 1128.02(3) Å3 and Z = 3. Investigation of other samples of ettringite-group minerals from N’Chwaning 3 Mine demonstrates wide variations of the contents of manganese, iron and boron, and possible existence of a Mn4+-dominant analogue of sturmanite with the presumed idealized formula Са6Mn4+2(SO4)2[B(OH)4](OH)10O2·nH2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Batic OR, Milanesi CA, Maiza PJ, Marfil SA (2000) Secondary ettringite formation in concrete subjected to different curing conditions. Cement Concr Res 30:1407–1412

    Article  Google Scholar 

  • Brown PW, Hooton RD (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. Cement Concr Compos 24:361–370

    Article  Google Scholar 

  • Brown PW, Hooton RD, Clark BA (2003) The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. Cement Concr Compos 25:939–945

    Article  Google Scholar 

  • Chalmin E, Farges F, Brown GE Jr (2009) A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib Mineral Petrol 157:111–126

    Article  Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer, Dordrecht

    Book  Google Scholar 

  • Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, Cham

    Book  Google Scholar 

  • Chukanov NV, Britvin SN, Van KV, Möckel S, Zadov AE (2012) Kottenheimite, Ca3Si(SO4)2(OH)6·12H2O, a new ettringite-group mineral from the Eifel area, Germany. Can Mineral 50:55–63

    Article  Google Scholar 

  • Chukanov NV, Kasatkin AV, Zubkova NV, Britvin SN, Pautov LA, Pekov IV, Varlamov DA, Bychkova YaV, Loskutov AB, Novgorodova EA (2016) Tatarinovite Са3Al(SO4)[В(ОH)4](ОH)6·12H2O, a new ettringite-group mineral from Bazhenovskoe deposit, central Urals, Russia, and its crystal structure. Geol Ore Depos 58(8):653–665

    Article  Google Scholar 

  • Crammond NJ (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cement Concr Res 15:1039–1050

    Article  Google Scholar 

  • Day RL (1992) The effect of secondary ettringite formation on the durability of concrete: a literature analysis. Portland Cement Association, Skokie

    Google Scholar 

  • Dunn PJ, Peacor DR, Leavens PB, Baum JL (1983) Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. Am Mineral 68:1033–1037

    Google Scholar 

  • Effenberger H, Kirfel A, Will G, Zobetz E (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6(SO4)(CO3)⋅12H2O. N Jb Miner Mh 60–68

  • Farges F (2005) Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys Rev B 71(155109):1–14

    Google Scholar 

  • Ferraris G, Ivaldi G (1988) Bond valence vs bond length in O···O hydrogen bonds. Acta Cryst B 44:341–344

    Article  Google Scholar 

  • Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst B71:562–578

    Google Scholar 

  • Gaudefroy C, Permingeat F (1965) La jouravskite, une nouvelle espèce minérale. Bull Soc fr Minéral 88:254–262 (French)

    Google Scholar 

  • Granger MM, Protas J (1969) Détermination et étude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)6·12H2O. Acta Cryst 25:1943–1951

    Article  Google Scholar 

  • Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Geol Sur Israel Bull 70:25–26

    Google Scholar 

  • Gross S (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel J Earth Sci 29:81–84

    Google Scholar 

  • Grubessi O, Mottana A, Paris E (1986) Thaumasite from the Tschwinning [N’Chwaning] mine, South Africa. Tschermaks Mineral Petrog Mitt 35:149–156

    Article  Google Scholar 

  • Hentschel G (1993) Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel. Lapis 18(9):11–23

    Google Scholar 

  • Knill DC, Young BR (1960) Thaumasite from Co. Down, Northern Ireland. Mineral Mag 32:416–418

    Google Scholar 

  • Kusachi I, Shiraishi N, Shimada K, Ohnishi M, Kobayashi S (2008) CO3-rich charlesite from the Fuka mine, Okayama Prefecture, Japan. J Mineral Petrol Sci 103:47–51

    Article  Google Scholar 

  • Malinko SV, Chukanov NV, Dubinchuk VT, Zadov AE, Koporulina EV (2001) Buryatite, Ca3(Si,Fe3+,Al)[SO4](OH)5O·12H2O, a new mineral. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc Rus Mineral Soc) 130(2):72–78 (Russian)

    Google Scholar 

  • Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Mineral 97:816–827

    Article  Google Scholar 

  • Martucci A, Cruciani G (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Phys Chem Miner 33:723–731

    Article  Google Scholar 

  • McDonald AM, Petersen OV, Gault RA, Johnsen O, Niedermayr G, Brandstätter F, Giester G (2001) Micheelsenite, (Ca,Y)3Al(PO3OH,CO3)(CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. N Jb Min Mh 337–351

  • Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301

    Article  Google Scholar 

  • Moore AE, Taylor HFW (1970) Crystal structure of ettringite. Acta Cryst B26:386–393

    Article  Google Scholar 

  • Motzet H, Pöllmann H (1999) Synthesis and characterization of sulfite-containing AFm phases in the system CaO–Al2O3–SO2–H2O. Cement Concr Res 29:1005–1011

    Article  Google Scholar 

  • Nishio-Hamane D, Ohnishi M, Momma K, Shimobayashi N, Miyawaki R, Minakawa T, Inaba S (2015) Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineral Mag 79:413–423

    Article  Google Scholar 

  • Peacor DR, Dunn PJ, Duggan M (1983) Sturmanite, a ferric iron, boron analogue of ettringite. Can Mineral 21:705–709

    Google Scholar 

  • Pekov IV, Chukanov NV, Britvin SN, Kabalov YuK, Göttlicher J, Yapaskurt VO, Zadov AE, Krivovichev SV, Schüller W, Ternes B (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series. Mineral Mag 76:1133–1152

    Article  Google Scholar 

  • Pöllmann H, Kuzel H-J, Wenda R (1989) Compounds with ettringite structure. N Jb Min Abh 160:133–158

    Google Scholar 

  • Pushcharovsky DY, Lebedeva YS, Zubkova NV, Pasero M, Bellezza M, Merlino S, Chukanov NV (2004) Crystal structure of sturmanite. Can Mineral 42:723–729

    Article  Google Scholar 

  • Ravel B, Newville M (2005) Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Sims I, Huntley SA (2004) The thaumasite form of sulfate attack—breaking the rules. Cement Concr Compos 26:837–844

    Article  Google Scholar 

  • Skoblinskaya NN, Krasilnikov KG, Nikitina LV, Varlamov VP (1975) Changes in crystal structure of ettringite on dehydration. 2. Cement Concr Res 5:419–431

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Foundation for Basic Research, Grant no. 18-29-12007_mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita V. Chukanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 KB)

Supplementary material 2 (CIF 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukanov, N.V., Zubkova, N.V., Pautov, L.A. et al. Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties. Phys Chem Minerals 46, 417–425 (2019). https://doi.org/10.1007/s00269-018-1012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-1012-8

Keywords

Navigation