Skip to main content

Advertisement

Log in

Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-pressure single-crystal X-ray diffraction experiments were conducted on natural grunerite crystals with composition (Fe5.237Mg1.646Ca0.061Mn0.051Na0.015Ti0.002Cr0.001K0.001)(Si7.932Al0.083)O22(OH)2, using a synchrotron X-ray source. Grunerite has C2/m symmetry at ambient conditions. The samples were compressed at 298 K in a diamond-anvil cell to a maximum pressure of 25.6(5) GPa. We observe a previously described phase transition from C2/m (α) to P21/m (β) to take place at 7.4(1) GPa, as well as a further transition from P21/m (β) to C2/m (γ) at 19.2(3) GPa. The second-order Birch–Murnaghan equation of state fit to our compressional data, yielded the values V0 = 914.7(7) Å3 and K0 = 78(1) GPa for α-grunerite, V0 = 926(5) Å3 and K0 = 66(4) GPa for β-grunerite and V0 = 925(27) Å3 and K0 = 66(13) GPa for γ-grunerite. The β–γ phase transition produces a greater degree of kinking in the double silicate chains of tetrahedra accompanied by a discontinuous change in the a and c unit cell parameters and the monoclinic β angle. At 22.8(4) GPa the O5–O6–O5 kinking angle of the new high-pressure C2/m phase is 137.5(4)°, which is the lowest reported for any monoclinic amphibole. This study is the first structural report to show the existence of three polymorphs within an amphibole group mineral. The high-pressure γ-phase illustrates the parallel structural relations and phase transformation behavior of both monoclinic single and double chain silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrusta R, Hunen J, Goes S (2014) The effect of metastable pyroxene on the slab dynamics. Geophys Res Lett 41:8800–8808

    Article  Google Scholar 

  • Alvaro M, Nestola F, Ballaran TB, Cámara F, Domeneghetti MC, Tazzoli V (2010) High-pressure phase transition of a natural pigeonite. Am Miner 95:300–311

    Article  Google Scholar 

  • Angel RJ (2000) High-pressure structural phase transitions. Rev Miner Geochem 39:85–104

    Article  Google Scholar 

  • Arlt T, Armbruster T (1997) The temperature-dependent P21/c-C2/c phase transition in the clinopyroxene kanoite MnMg[Si2O6]: a single-crystal X-ray and optical study. Eur J Miner 9:953–964

    Article  Google Scholar 

  • Arlt T, Angel RJ, Miletich R, Armbruster T, Peters T (1998) High-pressure P21/c–C2/c phase transitions in clinopyroxenes: influence of cation size and electronic structure. Am Miner 83:1176–1181

    Article  Google Scholar 

  • Arlt T, Kunz M, Stolz J, Armbruster T, Angel RJ (2000) P-T-X data on P21/c-clinopyroxenes and their displacive phase transitions. Contrib Miner Petrol 138:35–45

    Article  Google Scholar 

  • Boehler R, De Hantsetters K (2004) New anvil designs in diamond-cells. High Press Res 24:391–396

    Article  Google Scholar 

  • Boffa Ballaran T, Angel RJ, Carpenter MA (2000) High-pressure transformation behaviour of the cummingtonite-grunerite solid solution. Eur J Miner 12:1195–1213

    Article  Google Scholar 

  • Brown G, Prewitt C, Papike J, Sueno S (1972) A comparison of the structures of low and high pigeonite. J Geophys Res 77:5778–5789

    Article  Google Scholar 

  • Carpenter M (1982) Amphibole microstructures: some analogies with phase transformations in pyroxenes. Miner Mag 46:395–397

    Article  Google Scholar 

  • Comodi P, Mellini M, Ungaretti L, Zanazzi PF (1991) Compressibility and high pressure structure refinement of tremolite, pargasite and glaucophane. Eur J Miner 3:485–499

    Article  Google Scholar 

  • Comodi P, Ballaran TB, Zanazzi PF, Capalbo C, Zanetti A, Nazzareni S (2010) The effect of oxo-component on the high-pressure behavior of amphiboles. Am Miner 95:1042

    Article  Google Scholar 

  • Dera P (2007) GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector. GeoSoilEnviroCARS, Argonne

    Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  • Dewaele A, Torrent M, Loubeyre P, Mezouar M (2008) Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys Rev B 78:104102

    Article  Google Scholar 

  • Downs RT (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. Am Miner 88:556–566

    Article  Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. Am Miner 83:952–969

    Article  Google Scholar 

  • Finger LW (1969) The crystal structure and cation distribution of a grunerite. Miner Soc Am Spec Pap 2:95–100

    Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Article  Google Scholar 

  • Ganguly J, Freed AM, Saxena SK (2009) Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. Phys Earth Planet Inter 172:257–267

    Article  Google Scholar 

  • Gonzalez-Platas J, Alvaro M, Nestola F, Angel R (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382

    Article  Google Scholar 

  • Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. Rev Miner Geochem 67:1–54

    Article  Google Scholar 

  • Hirschmann M, Evans BW, Yang H (1994) Composition and temperature dependence of Fe–Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction. Am Miner 79:862–877

    Google Scholar 

  • Hugh-Jones D, Woodland A, Angel R (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041

    Google Scholar 

  • Iezzi G, Liu Z, Della Ventura G (2006) Synchrotron infrared spectroscopy of synthetic Na(NaMg)Mg5Si8O22(OH)2 up to 30 GPa: Insight on a new high-pressure amphibole polymorph. Am Miner 91:479–482

    Article  Google Scholar 

  • Iezzi G, Liu Z, Della Ventura G (2009) Synthetic ANaB(NaxLi1−xMg1)CMg5Si8O22(OH)2 (with x = 0.6, 0.2 and 0) P21/m amphiboles at high pressure: a synchrotron infrared study. Phys Chem Miner 36:343–354

    Article  Google Scholar 

  • Iezzi G, Tribaudino M, Della Ventura G, Margiolaki I (2011) The high-temperature P21/m → C2/m phase transitions in synthetic amphiboles along the richterite–(BMg)–richterite join. Am Miner 96:353

    Article  Google Scholar 

  • Konzett J, Sweeney RJ, Thompson AB, Ulmer P (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa. J Petrol 38:537–568

    Article  Google Scholar 

  • Law AD, Whittaker EJW (1980) Rotated and extended model structures in amphiboles and pyroxenes. Miner Mag 43:565–574

    Article  Google Scholar 

  • Nestola F, Ballaran TB, Ohashi H (2008) The high-pressure C2/c–P21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484

    Article  Google Scholar 

  • Nestola F, Pasqual F, Welch MD, Oberti R (2012) The effects of composition upon the high-pressure behaviour of amphiboles: compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole. Miner Mag 76:987

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40

    Article  Google Scholar 

  • Papike JJ, Cameron M (1976) Crystal chemistry of silicate minerals of geophysical interest. Rev Geophys 14:37–80

    Article  Google Scholar 

  • Papike J, Ross M (1970) Gedrites-crystal structures and intracrystalline cation distributions. Am Miner 55:1945–1972

    Google Scholar 

  • Prewitt CT, Downs RT (1998) High-pressure crystal chemistry. Rev Miner 37:283–318

    Google Scholar 

  • Prewitt CT, Papike JJ, Ross M (1970) Cummingtonite: a reversible, nonquenchable transition from P21/m to C2/m symmetry. Earth Planet Sci Lett 8:448–450

    Article  Google Scholar 

  • Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the advanced photon source. High Press Res 28:273–292

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  Google Scholar 

  • Smyth JR (1974) The high temperature crystal chemistry of clinohypersthene. Am Miner 59:1069–1082

    Google Scholar 

  • Sueno S, Cameron M, Papike J, Prewitt C (1973) The high temperature crystal chemistry of tremolite. Am Miner 58:649–664

    Google Scholar 

  • Tetzlaff M, Schmeling H (2000) The influence of olivine metastability on deep subduction of oceanic lithosphere. Phys Earth Planet Inter 120:29–38

    Article  Google Scholar 

  • Thompson EC, Campbell AJ, Liu Z (2016) In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure. Am Miner 101:706

    Article  Google Scholar 

  • Tribaudino M, Prencipe M, Nestola F, Hanfland M (2001) A P21/c–C2/c high-pressure phase transition in Ca0.5Mg1.5Si2O6 clinopyroxene. Am Miner 86:807–813

    Article  Google Scholar 

  • Tribaudino M, Nestola F, Meneghini C, Bromiley G (2003) The high-temperature P2/c1–C2/c phase transition in Fe-free Ca-rich P21/c clinopyroxenes. Phys Chem Miner 30:527–535

    Article  Google Scholar 

  • Wallace M, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Miner Petrol 44:1–19

    Article  Google Scholar 

  • Warren B (1930) II. The structure of tremolite H2Ca2Mg5(SiO3)8. Z Kristalogr Cryst Mater 72:42–57

    Google Scholar 

  • Warren В, Modell D (1930) 11. The structure of anthophyllite H2Mg7(SiO3)8. Z Kristalogr Cryst Mater 75:161–178

    Google Scholar 

  • Welch MD, Graham CM (1992) An experimental study of glaucophanic amphiboles in the system Na2O–MgO–Al2O3–SiO2–SiF4 (NMASF): some implications for glaucophane stability in natural and synthetic systems at high temperatures and pressures. Contrib Miner Petrol 111:248–259

    Article  Google Scholar 

  • Welch MD, Cámara F, Ventura GD, Iezzi G (2007) Non-ambient in situ studies of amphiboles. Rev Miner Geochem 67:223–260

    Article  Google Scholar 

  • Welch MD, Gatta D, Rotiroti N (2011) The high-pressure behavior of orthorhombic amphiboles. Am Miner 96:623

    Article  Google Scholar 

  • Whittaker E (1960) The crystal chemistry of the amphiboles. Acta Crystallogr A 13:291–298

    Article  Google Scholar 

  • Yang H, Prewitt CT (2000) Chain and layer silicates at high temperatures and pressures. Rev Miner Geochem 41:211–255

    Article  Google Scholar 

  • Yang H, Hazen RM, Prewitt CT, Finger LW, Ren L, Hemley RJ (1998) High-pressure single-crystal X-ray diffraction and infrared spectroscopic studies of the C2/m–P21/m phase transition in cummingtonite. Am Miner 83:288–299

    Article  Google Scholar 

  • Zanazzi PF, Nestola F, Pasqual D (2010) Compressibility of protoamphibole: a high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite. Am Miner 95:1758

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Hafner SS (1992) Compressibility of grunerite. Am Miner 77:480–483

    Google Scholar 

Download references

Acknowledgements

The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No. 1722969. Portions of the X-ray diffraction work were conducted using the X-ray Atlas instrument at the University of Hawaii, funded by NSF EAR Instrumentation and Facilities Grant 1541516. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Yong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, T., Dera, P. & Zhang, D. Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph. Phys Chem Minerals 46, 215–227 (2019). https://doi.org/10.1007/s00269-018-0999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0999-1

Keywords

Navigation