Skip to main content

Advertisement

Log in

X-ray single-crystal and Raman study of (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, a new pyroxene synthesized at 7 GPa and 1700 °C

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A new pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, synthesized in a high-pressure toroidal ‘anvil-with-hole’ apparatus at P = 7 GPa and T = 1700 °C, was characterized by X-ray single-crystal diffraction and Raman spectroscopy. The compound was found to be monoclinic (R1 = 2.56 %), space group C2/c, with lattice parameters a = 9.687(2), b = 8.814(1), c = 5.290(1) Å, β = 107.853(2)°, V = 430.08(1) Å3. The coexistence of Mg and Ti4+ at the M1 site does not induce strong modifications either to the M1 site or to the adjacent M2 site. The Raman spectrum of synthetic Na–Ti-pyroxene was obtained for the first time and compared with that of Mg2Si2O6 (with very low concentrations of Na and Ti). The structural characterization of the Na–Ti–Mg-pyroxene is important, because the study of its thermodynamic constants provides new constraints on thermobarometry of the upper mantle assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angel RJ, Gasparik T, Ross NL, Finger LW, Prewitt CT, Hazen RM (1988) A silica-rich sodium pyroxene phase with six-coordinated silicon. Nature 335:156–158

    Article  Google Scholar 

  • Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324

    Article  Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208(1):61–88

    Article  Google Scholar 

  • Beckett JR (1986) The origin of calcium-, aluminum-rich inclusions from carbonaceous chondrites: an experimental study, p 37. Ph.D. thesis, University of Chicago

  • Bishop FC, Smith JV, Dawson JB (1978) Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites. Lithos 11:155–173

    Article  Google Scholar 

  • Bobrov AV, Litvin YA (2009) Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Russ Geol Geophys 50:1221–1233

    Article  Google Scholar 

  • Boyd FR, Nixon PH (1975) Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. Phys Chem Earth 9:431–454

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr 47:192–197

    Article  Google Scholar 

  • Brown GE, Gibbs GV, Ribbe PH (1969) The nature and variation in length of the Si–O and Al–O bonds in framework silicates. Am Mineral 54:1044–1061

    Google Scholar 

  • Bruno E, Carbonin S, Molin G (1982) Crystal structure of Ca-rich clinopyroxenes on the CaMgSi2O6–Mg2Si2O6 join. Tsch Min Petr Mitt 29:223–240

    Article  Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. MSA Spec Paper 2:31–50

    Google Scholar 

  • Curtis LW, Gittins J (1979) Aluminous and titaniferous clinopyroxenes from regionally metamorphosed agpaitic rocks in central Labrador. J Petrol 20:165–186

    Article  Google Scholar 

  • Dal Negro A, Carbonin S, Molin G, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional and alkaline basaltic rocks. In: Saxena SK (ed) Advances in physical geochemistry, vol 2. Springer, Berlin, pp 117–150

    Chapter  Google Scholar 

  • Davies RM, Griffin WL, O'Reilly SY, Doyle BJ (2004) Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77(1):39–55

    Article  Google Scholar 

  • Dowty E, Clark JR (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. Am Mineral 58:230–240

    Google Scholar 

  • Gasparik T (1988) The synthesis of a new pyroxene-NaMg0.5Si2.5O6 and garnet near the diopside–jadeite join. Eos 69:500

    Google Scholar 

  • Gibbs GV, Hamil MM, Louisnathan SJ, Bartell LS, Yow H (1972) Correlations between Si–O bond length, Si–O–Si angle and bond overlap populations calculated using extended Hückel molecular orbital theory. Am Mineral 57:1578–1613

    Google Scholar 

  • Gurney JJ, Jakob WRO, Dawson JB (1979) Megacrysts from the Monastery kimberlite pipe, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusion in kimberlites and other volcanics. American Geophysical Union, Washington, pp 227–243

    Chapter  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 51:2177–2210

    Article  Google Scholar 

  • Lambruschi E, Aliatis A, Mantovani L, Tribaudino M, Bersani D, Redhammer GJ, Lotticia PP (2015) Raman spectroscopy of CaM2+Ge2O6 (M2+ = Mg, Mn, Fe, Co, Ni, Zn) clinopyroxenes. J Raman Spectrosc 46:586–590

    Article  Google Scholar 

  • Litvin YA (1991) Physical and chemical studies of melting of materials from the deep earth. Nauka, Moscow, p 312 (in Russian)

    Google Scholar 

  • Ma C, Rossman G (2009) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. Am Mineral 94:1491–1494

    Article  Google Scholar 

  • Mantovani L, Tribaudino M, Aliatis I, Lambruschi E, Lottici PP, Bersani D (2015) Raman spectroscopy of CaCoSi2O6–Co2Si2O6 clinopyroxenes. Phys Chem Miner 42:179–189

    Article  Google Scholar 

  • Mason B (1974) Aluminum-titanium-rich pyroxenes, with special reference to the Allende meteorite. Am Min 59:1198–1202

    Google Scholar 

  • Nestola F, Boffa Ballaran T, Liebske C, Bruno M, Tribaudino M (2006) High-pressure behavior along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:417–425

    Article  Google Scholar 

  • Nestola F, Tribaudino M, Boffa Ballaran T, Liebske C, Bruno M (2007) The crystal structure of pyroxenes along the jadeite-hedenbergite and jadeite-aegirine joins. Am Mineral 92:1492–1501

    Article  Google Scholar 

  • Ninomiya E, Isobe M, Ueda Y, Nishi M, Ohoyama K, Sawa H, Ohama T (2003) Observation of lattice dimerization in spin singlet low temperature-phase of NaTiSi2O6. Phys B 329:884–885

    Article  Google Scholar 

  • Ohashi H (2003) Crystal structures of (Na, Ca)(Ti, Mg)Si2O6 clinopyroxenes: X-ray study on Si–O bonding. Maruzen Publishing Service Center, Tokyo. ISBN 4-89630-094-7

  • Ohashi H, Fujita T, Osawa T (1982) The crystal structure of NaTiSi2O6 pyroxene. J Jpn Assoc Min Petr Econ Geol 77:305–309

    Article  Google Scholar 

  • Origlieri MJ, Downs RT, Thompson RM, Pommier CJS, Denton MB, Harlow GE (2003) High-pressure crystal structure of kosmochlor, NaCrSi2O6, and systematics of anisotropic compression in pyroxenes. Am Mineral 88:1025–1032

    Article  Google Scholar 

  • Oxford Diffraction (2009) CrysAlis P.R.O. Oxford Diffraction Ltd, Yarnton

  • Petricek V, Dusek M, Palatinus L (2006) Jana 2006. Structure determination software programs. Institute of Physics, Praha

    Google Scholar 

  • Prencipe M, Mantovani L, Tribaudino M, Bersani D, Lottici PP (2012) The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies. Eur J Mineral 24:457–464

    Article  Google Scholar 

  • Prewitt CT, Burnham CW (1966) The crystal structure of jadeite, NaAlSi2O6. Am Mineral 51:956–975

    Google Scholar 

  • Prewitt CT, Shannon RD, White WB (1972) Synthesis of a pyroxene containing trivalent titanium. Contrib Mineral Petrol 35:77–82

    Article  Google Scholar 

  • Redhammer GJ, Amthauer G, Lottermoser W, Treutmann W (2000) Synthesis and structural properties of clinopyroxenes of the hedenbergite CaFe2+Si2O6-aegirine NaFe3+Si2O6 solid-solution series. Eur J Mineral 12:105–120

    Article  Google Scholar 

  • Redhammer GJ, Ohashi H, Roth G (2003) Single-crystal structure refinement of NaTiSi2O6 clinopyroxene at low temperatures (298 < T<100 K). Acta Crystallogr 59:730–746

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77(1):609–637

    Article  Google Scholar 

  • Sen G (1988) Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post-eruptive lithosphere beneath Oahu. Contrib Mineral Petrol 100:61–91

    Article  Google Scholar 

  • Sobolev NV (1974) Deep-seated inclusions in kimberlite and the problem of the composition of the upper mantle, p 264

  • Tribaudino M, Mantovani L, Bersani D, Lottici PP (2012) Raman spectroscopy of (Ca, Mg)MgSi2O6 clinopyroxenes. Am Mineral 97:1339–1347

    Article  Google Scholar 

  • Tutti F, Dubrovinsky L, Saxena SK (2000) High pressure phase transformation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions. Geophys Res Lett 27:2025–2028

    Article  Google Scholar 

  • Ullrich A, Miletich R, Balič-Žunić T, Olsen L, Nestola F, Wildner M, Ohashi H (2010) (Na, Ca)(Ti3+, Mg)Si2O6-clinopyroxenes at high pressure: influence of cation substitution on elastic behavior and phase transition. Phys Chem Miner 37:25–43

    Article  Google Scholar 

  • Wang W, Sueno S, Takahashi E, Yurimoto H, Gasparik T (2000) Enrichment processes at the base of the Archean lithospheric mantle: observations from trace-element characteristics of pyropic garnet inclusions in diamond. Contrib Mineral Petrol 139:720–733

    Article  Google Scholar 

  • Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Mineral 86:790–806

    Article  Google Scholar 

  • Wilson AJC, Prince E (eds) (1999) International tables for X-ray crystallography, volume C: mathematical, physical and chemical tables, 2nd edn. KluwerAcademic, Dordrecht

    Google Scholar 

Download references

Acknowledgments

We are grateful to S. Khasanov for help in XRD studies. Analyses of pyroxene were obtained at the Laboratory of Analytical Techniques of High Spatial Resolution, Department of Petrology, Moscow State University. The constructive reviews of Fabrizio Nestola and an anonymous referee were very helpful for improving the quality of the manuscript. This study was partly supported by the Russian Foundation for Basic Research (Project No. 16-05-00419) and Foundation of the President of the Russian Federation (Grant No MK-8033.2016.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Sirotkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotkina, E.A., Bobrov, A.V., Spivak, A.V. et al. X-ray single-crystal and Raman study of (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, a new pyroxene synthesized at 7 GPa and 1700 °C. Phys Chem Minerals 43, 731–738 (2016). https://doi.org/10.1007/s00269-016-0829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0829-2

Keywords

Navigation